Автор: Пользователь скрыл имя, 26 Ноября 2012 в 18:04, курсовая работа
Для обеспечения нормальной работы систем осушки газа при пониженных давлениях контакта, на Уренгойском месторождении проводились активные работы по совершенствованию сепарационного и массообменного оборудования с участием ЦКБН, ВНИИГАЗа и института ТюменНИИГипрогаз. В дипломном проекте рассмотрена модернизация абсорбера ГП–502 с внедрением в массообменную секцию регулярной пластинчатой насадки.
Такое конструктивное решение
с применением сетчатых барабанов
позволило снизить жидкостную нагрузку
на коагулирующую секцию МФА, при
этом поверхность фильтрации в 5 раз
превысила свободное сечение
аппарата и в 10 раз уменьшилась
интенсивность забивания
С целью повышения пропускной
способности и тем самым
Последняя по ходу газа, секция улавливания ДЭГа (коагулирующая) состоит из перегородки, с размещенными на ней 124-мя фильтр – патронами длиной l = 1200 мм и диаметром d = 100 мм и сепарационной тарелки, аналогичной примененной в нижней сепарационной секции МФА.
Все 6 технологических линий работают идентично, поэтому ниже приводится описание работы одной технологической линии.
В сепарационной части абсорбера А-201, сырой газ за счет резкого снижения скорости и направления потока освобождается от механических примесей, пластовой воды с растворенным в ней метанолом и конденсата. Жидкость и мехпримеси скапливаются в нижней части аппарата, защищенной от возмущения потоком газа перегородкой из просечного листа. Уровень жидкости в сепарационной части абсорбера регулируется 2-х позиционным клапаном-регулятором с сигнализацией максимального и минимального уровня на пульте УВК. При крайне низком уровне жидкости в сепарационной части происходит закрытие отсечного клапана. Давление контролируется техническим манометром по месту, температура газа замеряется термометром сопротивления ТСМ с показаниями на УВК.
Отсепарированная жидкость из абсорбера отводится через клапан-регулятор уровня через дроссельную шайбу в разделитель Е-310. В разделителе Е-310 поддерживается постоянное давление клапаном-регулятором, установленном на линии сброса газа на факел. Уровень воды измеряется УБП и через клапан-регулятор конденсат направляется на склад ГСМ в емкость Е-612.
Очищенный от капельной жидкости газ, направляется через конусообразный патрубок полуглухой тарелки в массообменную секцию, где, многократно контактируя с раствором ДЭГа, осушается. Механизм осушки газа представляет собой процесс абсорбции влаги, находящейся в парообразном состоянии, концентрированным раствором диэтиленгликоля. Интенсивность контактирования достигается путем барботажа газа через слой ДЭГа на сетчатых тарелках, работающих в режиме уноса. Таким образом, осуществляется циркуляция ДЭГа внутри ступени контакта. Концентрированный ДЭГ, сливаясь вниз по тарелкам, поглощает влагу из газа, при этом сам насыщается влагой и концентрация его снижается с 99,3%. до 95,3%.
Осушенный от влаги газ из массообменной секции направляется через 6 сетчатых фильтр-барабанов (описаны выше) в секцию улавливания (коагуляции), где от него отделяется унесенный капельный ДЭГ с помощью фильтр-патронов. Верхняя фильтрующая секция состоит из 124 фильтр-патронов. Патроны выполняются из перфорированной трубы, обернутой в 3 слоя металлической сеткой, затем обмотаны в 2 слоя иглопробивным нетканым полотном «Дарнит» и снова металлической сеткой. Для фиксирования патрона на тарелке по центру проходит стяжной металлический стержень, закрепляющий патрон на тарелке. Для герметичности соединения между патроном и тарелкой устанавливается резиновая прокладка. Аэрозоль и капли ДЭГа, уносимые газом, коагулируют на стеклоткани и стекают по наружной поверхности патрона на тарелку, с которой по выносному трубопроводу, врезанному в линию вывода НДЭГа, выводятся с полуглухой тарелки абсорбера. Уровень ДЭГа на полуглухой тарелке является гидрозатвором, препятствующим проходу газа по этому трубопроводу. Предусмотрен контроль перепада давления манометром в коагуляционной секции МФА с сигнализацией перепада, равного ДР = 0,04 МПа на дисплее и блокировкой на остановку насоса Н-310. Насосами Н-310 регенерированный ДЭГ подается в МФА. Регулирование производительности насосов производится посредством преобразователя ЭКТ-160. Количество регенерированного ДЭГа, подаваемого в МФА, контролируется диафрагмой с сигнализацией минимального расхода, установленной на линии подачи ДЭГа в абсорбер. Сравнение сигналов с дифманометров происходит в регуляторе, установленном в операторной.
Насыщенный ДЭГ с концентрацией 95,3% весовых собирается на полуглухой тарелке абсорбера и автоматически через клапан-регулятор уровня ПОУ-8 и отсечной клапан К-203 поступает в выветриватель В-301 на установку регенерации ДЭГа. Предусмотрена сигнализация максимального и минимального уровня на полуглухой тарелке МФА. При снижении уровня ниже допустимого срабатывает блокировка на закрытие отсечного клапана.
Осушенный газ после МФА последовательно проходит замерную диафрагму, клапан регулятор расхода газа, выходной запорный кран Ду = 300 и с давлением Р=4,3 4,4 МПа и температурой T=9 40°С поступает на ДКС-1 очереди по двум коллекторам Ду=1000, где дожимается до давления Р=5,6 6,0 МПа и с температурой T=21 22°С после СОГа, направляется в магистральный трубопровод.
Регулирование расхода газа
по технологической линии
Необходимый объём подачи регенерированного гликоля в абсорбер зависит от целого ряда факторов: расхода газа, давления и температуры контакта, концентрации регенерированного гликоля, эффективности работы самого аппарата и, в конечном счете, должен определяться достижением требуемой глубины осушки газа (согласно действующего ОСТ 51–40–93). Промысловыми исследованиями установлено, что подача диэтиленгликоля в количестве 5ч7,5 кг/1000 м3 обрабатываемого газа обычно достаточна для получения требуемой ОСТом кондиции газа.
4.5 Установка регенерации диэтиленгликоля
На установке комплексной подготовки газа УКПГ осушка газа производится с помощью диэтиленгликоля с концентрацией 99,3%. Применение такого раствора позволяет осушать сырой газ до точки росы минус 20°С. Исследование гигроскопических свойств гликолей показывает, что большой эффект при осушке газа дает увеличение концентрации гликолей выше 99%, но учитывая, что разложение гликолей с образованием органических кислот начинается ниже температуры их кипения, регенерацию их рекомендуется проводить при температуре не выше плюс 164 °С под вакуумом.
Установка паровой вакуумной регенерации ДЭГа, рисунок 4.4 предназначена для регенерации насыщенного ДЭГа. Суть ее заключается в повышении концентрации ДЭГа с 96,3% вес. до 99,3% вес. Пропускная способность одной установки 17–18 м/ч. В случае, если объем циркулирующего насыщенного гликоля будет превышать максимальную производительность колонны регенерации, в работу может быть подключен резервный десорбер и испаритель или же установка регенерации ДЭГа второго технологического цеха. Ввиду идентичности установок описание работы приводится для одной из них.
Насыщенный раствор ДЭГа с масс концентрацией 96,3–97,3%, с полуглухой тарелки абсорбера через клапан-регулятор уровня после дросселирования, с давлением 0,3 МПа поступает в общий коллектор 89x4 и далее в выветриватель В-301, где освобождается от избытка растворенного газа. Насыщенный гликоль дегазируется при давлении 0,35 МПа, выделившийся газ через свечу сбрасывается в атмосферу с помощью клапана – регулятора давления. Предусмотрена сигнализация максимального давления в выветривателе В-301. Для нормальной работы выветривателя и системы регенерации в целом, клапаном-регулятором уровня в выветривателе поддерживается определенный уровень НДЭГа. Сигнализация максимального и минимального уровней в В-301 выведена на мнемосхему и пульт УВК. Раствор насыщенного гликоля с температурой 15–16°С и давлением 0,3 МПа, пройдя один из фильтров Ф-301 (тонкой очистки), через клапан-регулятор уровня подается в трубное пространство теплообменников Т-302, где нагревается встречным потоком регенерированного ДЭГа до температуры 120–130°С. Температура НДЭГа до и после Т-302 контролируется ртутными термометрами по месту.
После Т-302 раствор НДЭГа с температурой 120–130°С подается в десорбер Д-301 на регенерацию. Десорбер имеет 18 колпачковых массообменных тарелок и одну полуглухую тарелку, разделяющую кубовую часть колонны от выпарной.
Раствор НДЭГа, перетекая сверху вниз с тарелки на тарелку, контактирует с восходящим паровым потоком, идущим от испарителя И-301, за счет чего происходит отпарка влаги, поглощенной раствором ДЭГа из газа, при этом раствор ДЭГа нагревается и концентрация его повышается. Согласно документации РД 9510–51–83 в десорберах Д-301 была проведена модернизация с целью снижения потерь ДЭГа с рефлюксом путем увеличения эффективности массообмена. Для этого были демонтированы две верхние контактные тарелки, технологического цеха. Ввиду идентичности установок описание работы приводится для одной из них.
Насыщенный раствор ДЭГа с концентрацией 96,3–97,3% масс, с полуглухой тарелки абсорбера через клапан-регулятор уровня после дросселирования, с давлением 0,3 МПа поступает в общий коллектор 89x4 и далее в выветриватель В-301, где освобождается от избытка растворенного газа. Насыщенный гликоль дегазируется при давлении 0,35 МПа, выделившийся газ через свечу сбрасывается в атмосферу с помощью клапана – регулятора давления. Предусмотрена сигнализация максимального давления в выветривателе В-301. Для нормальной работы выветривателя и системы регенерации в целом, клапаном-регулятором уровня в выветривателе поддерживается определенный уровень НДЭГа. Сигнализация максимального и минимального уровней в В-301 выведена на мнемосхему и пульт УВК. Раствор насыщенного гликоля с температурой 15–16°С и давлением 0,3 МПа, пройдя один из фильтров Ф-301 (тонкой очистки), через клапан-регулятор уровня подается в трубное пространство теплообменников Т-302, где нагревается встречным потоком регенерированного ДЭГа до температуры 120–130 °С. Температура НДЭГа до и после Т-302 контролируется ртутными термометрами по месту.
После Т-302 раствор НДЭГа с температурой 120–130°С подается в десорбер Д-301 на регенерацию. Десорбер имеет 18 колпачковых массообменных тарелок и одну полуглухую тарелку, разделяющую кубовую часть колонны от выпарной.
Раствор НДЭГа, перетекая сверху вниз с тарелки на тарелку, контактирует с восходящим паровым потоком, идущим от испарителя И-301, за счет чего происходит отпарка влаги, поглощенной раствором ДЭГа из газа, при этом раствор ДЭГа нагревается и концентрация его повышается. Согласно документации РД 9510–51–83 в десорберах Д-301 была проведена модернизация с целью снижения потерь ДЭГа с рефлюксом путем увеличения эффективности массообмена. Для этого были демонтированы две верхние контактные тарелки,
Необходимое разрежение 0,6 – 0,7 кг/см в испарителе поддерживается клапаном-регулятором давления на всасывающей линии вакуум-насоса Н-306 с сигнализацией величины разрежения перед аэрохолодильником Х-301 на пульт УВК.
При снижении давления охлаждающей воды и уплотнительной жидкости к насосам Н-304 ниже допустимого значения предусмотрена блокировка на их остановку. РДЭГ из емкости Е-304 плунжерными насосами Н-310 подается в МФА. Предусмотрена блокировка насосов при падении давления до 0.
Отделившиеся пары (вода) от раствора ДЭГа с температурой 60ч70°С при давлении 2 МПа., с верхней части десорбера через шлемовую трубу Ду=200 мм поступают в холодильник-конденсатор Х-301, где охлаждаются до температуры 30ч40°С. Сконденсировавшаяся жидкость и газы из Х-301 стекают в рефлюксную емкость Р-301. Часть сконденсировавшейся жидкости из Р-301 подается насосами Н-307 через клапан-регулятор температуры верха на орошение десорбера. Расход жидкости, подаваемой на орошение колонны, контролируется по ротаметру, установленному на линии подачи рефлюкса. Избыток жидкости из Р-301 через клапан-регулятор сбрасывается в промстоки. Минимальный и максимальный уровни в рефлюксной емкости Р-301 сигнализируются на пульт УВК. Контроль за давлением в рефлюксной емкости осуществляется по месту вакуум – манометром и выводится на пульт УВК. Температура верха десорбера поддерживается клапаном-регулятором, установленным на линии подачи орошения в десорбер.
Установка паровой вакуумной регенерации ДЭГа цеха №1 и цеха №2 взаимосвязаны общим коллектором и могут быть, при необходимости взаимозаменяемы.
В каждом технологическом цехе имеется узел редуцирования газа на собственные нужды с диафрагмой ДК и дифманометром ДСС-734 для замера расхода газа на собственные нужды, рисунок 4.5.
Параметры газа на собственные нужды:
– температура не ниже 10°С;
– давление 0,25–0,30 МПа.
Рисунок 4.4 – Схема расхода газа на собственные нужды
4.6 Узел редуцирования газа на собственные нужды
К потребителям относятся: ГРУ котельной, газ на подогрев воды в РВС-700 м3, питание пилотной горелки факела. Отбор газа на собственные нужды (на редуцирование) производится с линии осушенного и сырого газа, а также из коллектора осушенного газа после выхода из абсорбера.
Газ, пройдя небольшой подогреватель типа «труба в трубе» Т-205, обогреваемый водяным паром, нагревается до 40°С и поступает на первую ступень редуцирования. Температура газа на выходе Т-205 контролируется ртутным термометром. Редуцирование газа происходит на клапане-регуляторе (поз. РГС 229) до давления 0,23 МПа. При этом температура редуцируемого газа понижается до 10–15 °С. Далее газ идет на подогрев в межтрубное пространство кожухотрубного теплообменника Т-201, где подогревается водяным паром до температуры 45°С, после чего проходит хозрасчетную замерную диафрагму (поз. Е-231) и идет на вторую ступень редуцирования.
Информация о работе Система сбора и подготовки газа на примере 13 УКПГ Уренгойского месторождения