Автор: Пользователь скрыл имя, 13 Марта 2012 в 22:55, реферат
1.Краткая историческая справка о развитии науки «механика грунтов»
Механика грунтов как наука зародилась в середине XIX века, а сформировалась к началу XX, когда возникла необходимость прогнозирования процессов в массивах грунтов, взаимодействующих с сооружениями. В основу формирования механики грунтов легли исследования в области механики деформируемого тела, а также в области геологии и гидрогеологии. Большое влияние на развитие дисциплины оказали работы иностранных ученых Ш.Кулона, А. Дарси, Е. Винклера, Ж. Буссинеска
1.Краткая историческая
справка о развитии науки «
Механика грунтов как наука зар
В 1934 году был издан учебник Н. А.
В настоящее время механика грунтов обладает развитой экспериментальной базой и мощным механико-математическим аппаратом. Специализированные кафедры работают в МГСУ, МГУ, СПбГАСУ, ПГУПС, МАДИ и других высших учебных заведениях.
2. Образование природных рыхлых грунтов
Грунтами строители называют верхние слои коры выветривания литосферы и относят к ним скальные, полускальные и рыхлые горные породы. Магматические горные породы образовались в результате остывания магмы, а также в результате горнообразовательных процессов. Вследствие выветривания они постепенно превращались в рыхлые горные породы. Раздробленные частицы горных пород перемещались в пониженные части поверхности земли, где откладывались, образуя осадочные горные породы. Если в процессе горообразования они оказались близко к поверхности земли, то под воздействием химического выветривания образовывали крупноскелетные или мелкодисперсные грунты.
Выветривание горных пород - сложный
процесс, в котором выделяется несколько форм его проявления. 1-я форма - механическое
дробление горных пород и минералов без
существенного изменения их химических
свойств - называется механическим или фи
Механическое (физическое) выветривание.
Породы распадаются на обломки и превращаются в глыбы, дресву и песок. При этом состав конечных продуктов разрушения целиком зависит от структуры, текстуры и минерального состава горных пород, подвергшихся разрушению.
Важнейшим фактором механического выветривания является инсоляция, то есть нагревание поверхности горных пород солнечными лучами. Возникающее вследствие попеременного нагрева и остывания периодическое изменение объема породы вызывает ее растрескивание, нарушение связи между минералами, а также и внутри минералов. Образование и рост трещин, раскалывающих породу на куски, идет тем интенсивнее, чем больше суточная амплитуда колебаний температуры, достигающая особенно больших величин (> 40oC) в субтропических пустынях и высокогорных областях. Образование трещин в горных породах в значительной мере зависит от их свойств - слоистости, сланцеватости, наличия спайности у минералов. Механическому разрушению способствует и так называемая первичная отдельность магматических пород, т.е. система взаимопересекающихся трещин, возникающих в породе задолго до начала ее выветривания вследствие уменьшения объема при остывании магматического тела или при воздействии тектонических сил. Первичная отдельность может быть выражена лишь невидимыми простым глазом трещинами, но при выветривании эти трещины легко расширяются и способствую разрушению породы, обусловливая характерные формы образующихся обломков в виде столбов, матрацев и т.д.
Породы с массивной текстурой,
прогреваясь и остывая за день
лишь на определенную небольшую глубину,
начинают растрескиваться и отслаиваться
по кривым поверхностям, параллельным
неровным поверхностям выхода горных
пород (чешуйчатая отдельность). Такой
процесс называется десквамацие
Породы со слоистой или сланцеватой текстурой под влиянием инсоляции распадаются по плоскостям на плитки, расслаиваются, разлистовываются. Слоистая толща осадочных пород, например, песчаников, имеющих различную степень цементации, выветривается неоднородно. Одни слои легко распадаются на мелкий щебень, дресву и песок, другие долго сохраняют свою монолитность. Плотные, трудно выветриваемые породы сохраняются в виде выступов, легко выветриваемые осыпаются и на их месте образуются впадины. В результате возникает очень характерная скульптура выхода пород, называемая формами выветривания. Такими формами выветривания являются различные выступы, карнизы, столбы, останцы причудливой формы и др.
Интенсивность и характер механического
выветривания зависят не только от
температурного режима и других элементов
климата, но и от конкретного минерального
сложения породы, от ее теплоемкости и
теплопроводности. Быстрее разрушаются
темноокрашенные породы и минералы,
а также крупнокристаллические
полиминеральные породы с большим
различием коэффициентов
Механическое разрушение горных пород особенно интенсивно в областях, где суточная температура, отрицательная или положительная, колеблется вокруг нуля (высокогорья, приполярные области). Особое значение получает периодически замерзающая вода, проникающая в трещины.
Как известно, при замерзании вода расширяется на 1/11 своего объёма. Поэтому образовавшийся лёд давит на стенки трещин с силой 890 кг/см2, разрывая даже очень твёрдые породы. Эта форма разрушения горных пород называется морозным выветриванием.
Таким образом, физическое выветривание преобладает в условиях сухого континентального климата (пустыни) с резкими суточными изменениями температуры, проявляясь в форме инсоляции и особенно широко развито в высокогорных и субполярных областях в виде морозного выветривания.
В результате физического выветривания образуются особые формы ландшафта. Если выветривание происходит в горных областях, где имеются плоские горизонтальные поверхности, то продукты выветривания накапливаются на них в виде глыб и дресвяного материала. В результате создаются элювиальные россыпи. Элювий (лат. "элюо" - вымывать) - это осадок, не подвергшийся переносу, то есть накапливающийся в результате разрушения породы на месте.
Типичные области физического выветривания - каменистые пустыни, или, как их называют в Сахаре, гаммады. Это области горизонтально лежащих пластов, образующих террасовидные поверхности с вертикальными уступами между ними. На краю уступов пласты расчленяются на останцы конусовидной формы. Понижения между останцами покрыты россыпями каменных глыб и щебнем. Более мелкий материал уносится ветром.
В процессе физического выветривания из массивных пород высвобождаются многие стойкие минералы, являющиеся полезными ископаемыми (Au, Pt, касситерит, шеелит, алмазы) и образуют россыпные месторождения.
Химическое выветривание.
Наиболее активные агенты: О2, СО2 и вода, а при органическом выветривании и органические кислоты. Особенно велика в этом отншении роль воды, несущей в себе растворы солей и газов. Химическое выветривание может быть выражено несколькими типами, главные из которых: растворение, окисление, восстановление, карбонатизация.
Растворение происходит под действием воды, стекающей по поверхности выхода горной породы или просачивающейся через её трещины и поры. При этом она избирательно выносит (выщелачивает) из породы только некоторые вещества. Сильнее всего растворяются хлориды (галит, сильвин), далее сульфаты (гипс), карбонаты (известняки, доломиты). В зависимости от величины частиц, на которые распалось вещество горной породы, различают 2 типа растворов: истинные (кристаллоидные) и коллоидные.
В первом типе раствора вещество распадается
до молекул и ионов. В таком
растворе молекулы или ионы растворённого
вещества обладают такой же подвижностью,
что и молекулы растворителя - воды,
что обеспечивает равномерное распределение
вещества во всей массе растворителя
(диффузию). Особенностью данного типа
растворов является то, что при
определённом насыщении растворённое
вещество выпадает из них в осадок
в твёрдом кристаллическом
Под влиянием электролитов частицы коллоида слипаются в хлопья и комочки, которые начинают осаждаться, образуя гель - вещество, имеющее свойства твёрдого тела. Образование коллоидных растворов зависит от сложного сочетания физико-химических факторов и подчиняется иным закономерностям, нежели обычное растворение. Именно в форме коллоидных растворов выносится огромное количество продуктов химического выветривания, способствуя тем самым разложению минералов. Учитывая это можно сказать, что абсолютно нерастворимых веществ в природе вообще нет и что процесс растворения в той или иной форме участвует в выветривании любых минералов и горных пород.
При активном участии растворения идёт гидролиз - разложение минералов с выносом части образующихся продуктов и сопровождающийся гидратацией.
Пример разложения полевых шпатов:
Полевые шпаты промежуточные минералы
K, Na[AlSi3O8] (гидрослюды, гидрохлориты) Al4[Si4
Ca[Al2Si2O8]
(катионы K, Na, Ca при взаимодействии с СО2 превращаются в карбонаты и уносятся или остаются на месте; каркасная структура переходит в слоевую; кремнезём частично выносится в растворе, частично переходит в коллоид и выпадает в виде геля SiO2 - опала, частично остаётся в каолините)
При выветривании в тропических условиях иногда нарушается связь между Al и Si и образуются минералы бокситов Al2O3.nH2O и опал.
Глины, образующиеся при выветривании породы, одевают её слоем, предохраняющим от дальнейшего выветривания и представляющим собой кору выветривания. Кора выветривания -совокупность остаточных продуктов выветривания - различных элювиальных образований, развитых на материнских породах.
Характер кор выветривания и их мощность
связаны с климатическими условиями, количеством
осадков, поступление органического вещества.
Важное значение имеет рельеф и интенсивность
восходящих тектонических движений, а
также состав горной породы, подвергшейся
выветриванию. Наиболее благоприятными
условиями для формирования кор выветривания
являются выровненный рельеф и сочетание
высокой температуры, большой влажности
и большого количества органических веществ.
В условиях жаркого климата возникает латеритная кора выветривания. Глубже расположен
каолинитовый горизонт, ещё ниже - гидрослюдисто-
Окисление и гидратация. Окислению подвержены в первую очередь минералы, содержащие Fe, S, V, Mn, Ni, Co и др. Факторами окисления являются кислород воздуха и вода. В присутствии влаги закиси металлов, входящие в состав минералов, легко переходят в окиси, сульфиды - в сульфаты. Во влажном климате образуются богатые водой гидраты окислов железа.
FeS2 + nO2 + mH2O FeSO4 Fe2(SO4)3 Fe2O3. nH2O
пирит
Гидратация - поглощение минералами воды.
CaSO4 + 2H2O = CaSO4 . 2H2O
ангидрит
Fe2O3 + nH2O Fe2O3 . nH2O
гематит лимонит
В жарком климате в результате интенсивного прогревания солнечными лучами и испарения влаги вода легко отнимается от окислов Fe. При окислении железа, содержащегося в горной породе, здесь образуются бедные водой или лишённые воды минералы группы гематита (Fe2O3), имеющие красную окраску. Поэтому почвы коры выветривания тропической области характеризуются красной окраской и способны быстро твердеть при высыхании. Такие образования называются латеритами (лат. "латер" - кирпич). В латеритах присутствуют глинозём Al2O3 и гидроокислы железа.
Карбонатизация представляет собой процесс присоединения углекислоты к продуктам изменения горных пород, приводящий к образованию карбонатов Ca, Fe, Mg и др. Подавляющее большинство карбонатов довольно хорошо растовримы в воде и поэтому выносятся ею из формирующейся коры выветривания в подстилающие породы, где часто из них отлагается, образуя стяжения (конкреции). Много карбонатов выносится в грунтовые воды, обусловливая их жёсткость, т.е. неспособность смывать жиры и давать пену в соединении с жиром.