Каустобиолиты

Автор: Пользователь скрыл имя, 14 Ноября 2011 в 09:06, контрольная работа

Описание работы

Каустобиолиты – это горные горючие ископаемые, обогащенные органическим веществом (Потонье 1908г.) При этом под органическим веществом понимается вещество, сложенное органическими компонентами в форме мономеров или полимеров, которые прямо или косвенно возникли из живого вещества. Минеральные компоненты: раковины, кости, зубы не входят в его состав.

Работа содержит 1 файл

Контрольная работа.docx

— 74.51 Кб (Скачать)
 

      В табл. 1 приведен средний элементарный состав высших растений (древесина) и низших планктонных организмов (фито- и зоопланктона). Далее приведен средний элементарный состав каустобиолитов различного происхождения:

1) ископаемых  углей, образовавшихся из высших  растений 

2) ископаемых  углей, образовавшихся из планктона 

3) нафтидов, исходным материалом которых  также является планктон.

      В каждой из этих рубрик каустобиолиты расположены в порядке, отвечающем степени их преобразования. Из данных таблицы видно, что по мере преобразования падает содержание кислорода и водорода и возрастает содержание углерода. С несколько меньшей отчетливостью эта закономерность видна в ряде метаморфизма нафтидов. Элементарный состав нефти по сравнению с элементарным составом исходного планктона характеризуется значительно повышенным содержанием водорода и очень низким содержанием кислорода, т.е. высокой степенью восстановленности, что резко отличает ее от других каустобиолитов. Процесс постепенно обогащения каустобиолитов углеродом называется карбонатизацией.

      В биосфере непрерывно происходят два противоположных процесса: рост растительных и животных организмов, накопление громадных масс органических остатков после их отмирания и непрерывное разложение отмерших организмов кислородом воздуха и воды, микробами и т. п. Для нас достаточно сосредоточить свое внимание на растительном веществе, так как именно оно составляет подавляющую часть биомассы, по сравнению с которой доля животных организмов исчезающе мала. Нарастание живого растительного вещества происходит за счет усвоения углерода из углекислоты воздуха. Это усвоение совершается благодаря способности хлорофилла, содержащегося в зеленых частях растений, ассимилировать углерод под действием солнечного света (реакции фотосинтеза).

      После отмирания высших растений их остатки могут накапливаться двумя способами: на месте произрастания (автохтонно) или путем переноса и вторичного отложения (аллохтонно). Способ накопления влияет на некоторые свойства углей (например, на их зольность, т. е. содержание в них минеральных примесей).

      Как увидим ниже, для превращения любых растительных остатков в каустобиолиты необходимым условием является погружение их на ту или иную глубину. Остатки высших растений проходят при этом следующие стадии превращения: торфяную, буроугольную, каменноугольную и антрацитовую. Конечным продуктом превращения, как сказано выше, является графит. Остатки планктонных организмов проходят стадии органического ила — сапропеля и сапропелита (сапропелевого угля); при дальнейшем преобразовании, как увидим ниже, сапропелит может перейти в каменный уголь, антрацит и графит. Таким образом, на крайних стадиях превращения обе генетические линии, идущие от высших растений и от планктона, сближаются и полностью сливаются в графите.

      В иных условиях преобразование остатков планктона может привести к возникновению нефти, а из последней – всего ряда нафтидов. И здесь превращение нафтидов, связанное с погружением земной коры, состоит в карбонатизации, приводящей на конечных стадиях к высокоуглеродистым каустобиолитам и, наконец, к графиту.

      Отмирающий органический материал транспортируется в почвенные слои и в осадок водных потоков, морей и океанов. На пути к месту захоронения он разлагается химически, подвергается микробиальному воздействию, частично окисляется, растворяется, переходит в сложные органические кислоты, отлагается и накапливается.

      Транспортировка органического материала осуществляется в основном в виде двух форм: детритной и растворенной. Детритная форма - это живые и отмершие организмы, их частички с размерностью обычно менее 1 мкм.

      Растворенное вещество - это продукты химического и микробиального происхождения, жидкой субстанции или растворенные в воде, Размер отдельных органических компонентов обычно более 1 мкм. О соотношении форм переноса можно судить по продуктам выноса реки Амазонки, составляющим 20% мирового речного стока. В этом стоке содержится 1010 т органического углерода в год, что в 100 раз больше всей ежегодной продукции Черного моря. Около 107 т общего органического углерода выносится в растворенной форме. Остальной органический углерод переносится в виде детритного вещества. Следовательно, для транспортировки органического материала гораздо большее значение имеют детритные формы.

         Накопление органического вещества происходит в зонах высокой биологической продуктивности. А она контролируется солнечной и тепловой энергией, а также питательностью среды. Наибольшая биологическая продуктивность наблюдается в верхнем 60-80 метровом слое морской воды. Биологическая продуктивность прибрежных вод, ровная 100 г в год Сорг/м2 в среднем почти в 2 раза выше, чем вод открытых океанов. Наиболее продуктивны зоны апвеллинга (~300 г Сорг/м2 в год), и некоторые районы, где действуют господствующие ветры и силы Кориолиса. Однако, в субаэральных обстановках накопление значительных масс органического вещества не происходит, т.к. ОВ там легко разрушается в процессах химического и биохимического окисления.

         Немаловажными факторами, определяющими накопление Сорг, является климат и окружающая среда. Кроме того, накопление ОВ в осадках требует сбалансированного оптимального соотношения между динамической активностью водных масс и скоростью седиментации. Дело в том, что пелитовый материал легко адсорбирует растворённые органические частицы, захватывает взвешенные частицы детритного вещества и легко выносится из районов с высокой гидродинамической активностью в зоны распространения спокойных вод. Для тонкозернистых осадков, которые здесь накапливаются, характерен ограниченный доступ растворенного молекулярного кислорода, вследствие чего возрастает вероятность сохранения органического вещества. Если же скорость седиментации слишком высока, происходит разубоживание и формируются осадки с низким содержанием ОВ.

      Для накопления осадков, обогащенных органическим материалом, благоприятные условия создаются на континентальных шельфах, в зонах со спокойными водами: лагунах, эстуариях и глубоких впадинах с ограниченной циркуляцией. Континентальные склоны также можно отнести к обстановкам, благоприятным для аккумуляции органического вещества.

       Биохимическое разложение ОВ осуществляется в осадке бактериями, грибами, водорослями, которые широко распространены в субаэральных почвах, водах и осадках. Поскольку питание бактерий осуществляется осмотическим способом, окружающий материал, в том числе и органический, должен быть переведен в растворенное состояние и формы, доступные для усвоения микроорганизмом. Выпуская энзимы (ферменты) бактерии разлагают сложные молекулы белков и углеводов, гидролизуя их. В результате из биополимеров образуются аминокислоты и сахара, в осадке появляются мономеры органического вещества.

      Менее интенсивному разложению подвергаются липиды и лигнин. Слабо поражаются споры, пыльца, семена, т.к. они защищены прочной оболочкой, недоступной для. разложения энзимами микроорганизмов. Сохранившиеся биологические остатки называют хемофоссилиями. Они могут сохраняться в осадках и даже накапливаться. Их можно использовать в качестве прекрасных биомаркеров тех сред, в которых они формировались,

      Поликокденсация – это процесс синтеза полимеров. Он осуществляется в микробиальной среде на базе продуктов жизнедеятельности организмов; мономеров, продуктов их метаболизма, частично переработанных и часто токсичных, а также компонентов вмещающего илового осадка. Процесс протекает параллельно или сразу после биохимического разложения ОВ.

      Поликонденсация (синтез полимеров) в обводненном осадке протекает по наиболее эффективному способу - поликонденсации в растворе. Роль катализаторов синтеза полимеров могут выполнять энзимы микроорганизмов и переходные металлы»

       В результате поликонденсации образуются сначала жидкие, а позднее твердые продукты реакции органического синтеза.  

      Жидкие продукты выщелачиваются разбавленной NaOH и пирофосфатом натрия. При исследующем воздействии кислотой среди них выделяются фульвовые (растворимые в кислотах) и гуминовые (нерастворимые в минеральных кислотах) кислоты, фульвовые и гуминовые кислоты часто называют гуминовыми веществами. Они имеют жидкую вязкую консистенцию и буроватый цвет. В их состав могут входить биофильные металлы: железо, кобальт, ванадий, медь, никель и другие.

      Переход в нерастворимое состояние продуктов органического синтеза происходит в толще диагенетизируемого. осадка в процессе его захоронения. Этот процесс сопровождается уменьшением концентрации кислорода, гибелью многих микроорганизмов, увеличением роли восстановительных реакций. Продолжающаяся поликонденсация ведет к эволюции фульвовых и гуминовых кислот и к образованию керогена. В процессе эволюции отношение кислорода и углерода меняется от 0,6 - в около поверхностных осадках, до 0,1 - в осадках, погруженных на глубины 50-100 м.

      С увеличением глубины захоронения осадка гумины постепенно преобразуются. В них снижается количество гидролизуемых компонентов, и органический материал приобретает более конденсированную структуру. Последнее выражается в его потемнении и увеличении твердости.

      В синтезе твердых полимеров участвуют металлы, которых обычно много в иловых осадках. Одним из активных металлов является уран. В связи с этим в породах, формирующихся в восстановительных обстановках, встречаются твердые ураноорганичеокие полимеры, в обстановках характеризуемых другими геохимическими параметрами образуются полимеры с рядом других металлов.

      Твердые продукты поликонденсации называются керогеном. Кероген – это органическое вещество, нерастворимое в органических растворителях, щелочах и кислотах. Химически кероген представляет собою трехмерную макромолекулу, которая составлена конденсированными циклическими ядрами, соединенными гетероатомными связями. Такое строение керогена обеспечивает его свойствами молекулярного сита. В матриксе (структура) керогена, как в молекулярном сите могут находиться липиды, углеводороды и другие ОВ.

      Наиболее часто кероген рассеян в минеральной массе пород в виде мелких буроватых, слабо прозрачных частиц. В связи с этим за керогеном закрепилось еще одно, менее корректное называние - рассеянное органическое вещество.

4 Основы геологии горючих ископаемых: Учебник для вузов / Семенович В.В. и др. – М.: Недра, 1987. – 397с.   

      В зависимости от условий седиментационно – диагенетического преобразования кероген имеет разные свойства принято различать три типа керогена.

      Кероген типа – I имеет химический состав, в котором отношение Н/С > 1,5, О/С < 0,1 и много липидного материала. При пиролизе (550-600 °С) он продуцирует широкую гамму летучих компонентов и наибольшее количество нефти по сравнению с другими и типами керогенов,

       Кероген типа – II имеет химический состав, в котором отношение Н/С относительно высоко (1,5-1,0), а значение О/С – низкое (0,1-0,2). Значительную роль в составе играют полиароматичвские ядра, сложноэфирные связи, сульфидные связи, битумоиды. При пиролизе кероген – II дает меньший выход продуктов, чем кероген-I. Однако они представлены нефтью и газом и составляют ~60% от всего органического вещества.

      Кероген типа – III имеет низкие значения Н/С (менее 1,0) и высокие значения атомного отношения О/С, достигающие 0,2-0,3. Строение его молекул напоминает строение молекул керогена – П, но он не содержит сложно эфирных группировок. При пиролизе он выделяет очень мало нефтепродуктов и, несравненно, больше газа.

      Классификация керогенов дана ван Д.Кревеленом, голандским ученым, крупнейшим специалистом в области химии полимеров. Она представлена в виде диаграммы на рис: 1.

Рис 1. Диаграмма  типов керогена ван Д. Кревелена 

      В условиях эволюции земной коры, погружения и поднимания осадочных бассейнов происходит преобразование не только пород, их минерального и газо-водной составляющих, но и захороненного в них органического вещества – керогена.

      Преобразование керогена на стадиях ката– и метагенеза происходит в результате увеличения Т и Р. Повышение температуры во время погружения осадочных отложений вызывает постепенную, перестройку структуры керогенов. Сначала в керогенах происходит разрыв слабых связей. При этом выделяется вода, углекислый газ и некоторые более сложные соединения. Позднее, в среднем катагенезе, высвобождаются углеводороды, образуется нефть, а затем и жидкий газ

      В метагенезе керогены перестраиваются наиболее существенно. Слагающие их компоненты собираются в крупные агрегаты, выделяют сухой газ, преобразуются в высокоуглородистые соединения. Постепенно остается единственный выделяющийся углеводородный газ – метан. Соотношение Н/С и О/С падает.

      Однако в преобразовании разных типов керогенов и слагаемых ими пород имеются и свои характерные особенности.

      Кероген типа – I и горючие сланцы, основу которых он составляет, в стадиальном эпигенезе выделяют молекулы азотистых, сернистых' и кислородных соединений. Они не имеют готовой нефти и выделяют в незначительных количествах битумоиды и газообразные углеводороды.

Информация о работе Каустобиолиты