Этот многоликий алмаз

Автор: Пользователь скрыл имя, 06 Декабря 2011 в 17:36, реферат

Описание работы

Драгоценные камни с давних времен были спутниками человека. Издавна человек стал замечать, что не все они похожи. Конечно, необработанный камень невзрачен, но часто их обрабатывает сама природа - при помощи ветра, песка, воды. Уже тогда человек стал делать украшения из натуральных камней. Правда, в давние времена человек мог обработать только мягкие минералы. Такие, как гагат, янтарь, кварц. Однако уже в середине 15 века ювелир бургундского герцога Людвиг ван Беркем впервые огранил алмаз, а в 17-м веке алмазы научились распиливать. Они и сейчас служат прекрасным материалом для изготовления бус, колец и прочей дорогой бижутерии. Но драгоценные камни - это не только красивый внешний вид. Камни олицетворяли собой мощь, красоту и силу. Поэтому люди наделяли их сверхъестественными свойствам

Содержание

Введение
1. Свойства алмаза
2. Образование алмазов
3. Добыча алмазов
4. Идентификация алмазов
5. Синтетические алмазы
Заключение
Литература
Введение

Работа содержит 1 файл

Этот многоликий алмаз.doc

— 109.00 Кб (Скачать)

Имитации алмаза можно разделить на две группы. К первой группе относятся имитации с высоким показателем преломления (выше 1,8, то есть их нельзя замерить на рефрактометре) и дисперсией, а такж с сильным алмазным блеском (синтетический рутил, титанат стронция, сфалерит, ниобат лития, фианит, ГГГ, ИАГ, титанит, демантоид). Ко второй - имитации с довольно низким показателями преломления (ниже 1,8, то есть их можно замерить на рефрактометре), дисперсией и стеклянным блеском. Наиболее близки к алмазам по показателям преломления и дисперсии из минералов циркон и титанит, а из синтетических материалов - фианит и ГГГ. 

Ряд диагностических  приборов основан на определении  отражательной способности (блеска), находящейся в связи со светопреломлением  веществ по формуле Френеля [ (n - 1)2 / (n+1)] 100. Рефлектометры У.У. Ханнемана  предназначены специально для отличия  алмаза от его высокопреломляющих имитаций. Рефлектограф "Gemprint" позволяет отличить алмаз от имитации по картинам отражения света гранями камней с различным внутренним строением и типом огранки. 

При правильной огранке алмаза весь свет, падающий на него через коронку, полностью отражается от граней павильона, и при просмотре бриллианта на свет видна только одна светящаяся точка вколете. Из-за полного внутреннего отражения нельзя ничего увидеть через бриллиант. На различии критического угла у алмаза и имитаций основаны тесты "световой шпиль" и "световая передача". Высокий показатель преломления алмаза при просмотре его через площадку создаёт иллюзию значительно меньшей толщины камня, чем это на самом деле. 

При диагностике  бриллиантов широко используется определение оптического характера с помощью полярископа. Оптически анизотропны синтетический рутил, ниобат лития, титанит, циркон, шеелит, лейкосапфир, фенакит, топаз, берилл, горный хрусталь. Причём двупреломление у некоторых из этих имитаций столь высоко (рутил, ниобат лития, циркон, титанит), что можно наблюдать удвоение рёбер нижних граней камня при просмотре его через площадку с помощью лупы или микроскопа. Алмаз - оптически изотропный минерал, однако довольно часто в нём наблюдается аномальное двупреломление, которое однако есть и у некоторых его имитаций (ИАГ, синтетической шпинели). 

Основное отличие  алмаза от имитаций - его непревзойдённая  твёрдость. Это свойство определяет характерное только для бриллиантов  наличие идеально плоских граней и острых рёбер на стыке граней. На ряде имитаций рёбра обычно слегка "заваленные" и присутствует вертикальная штриховка на рундисте. 

Весьма важное свойство при диагностике алмазов - их плотность. Из наиболее распространённых имитаций близкую к нему плотность  имеют только топаз, шпинель и, в некоторых случаях, титанит и сфалерит. Плотность остальных имитаций либо значительно выше плотности алмаза (рутил, титанат стронция, ниобат лития, ГГГ, циркон, шеелит, демантоид, ИАГ, корунд), либо ниже (фенакит, берилл, кварц). Плотность стекла колеблется в зависимости от содержания в нём свинца, у наиболее часто применяемого в качестве имитации бриллианта свинцового стекла она равна 3,74 г/см3. В связи с этим отличить алмазы, не закреплённые в изделия, от их имитаций весьма просто с помощью разбавленной жидкости Клеричи. Различие плотности алмаза и его имитаций приводит к тому, что при одном и том же размере масса бриллианта и имитаций будет различна, что помогает диагностике. Например, масса огранённого бриллиантовой огранкой камня одного и того же размера будет равна: алмаза - 1, титаната стронция - 1,45, ИАГ - 1,30, фианита -1,60. 

Дополнительными диагностическими свойствами могут  служить спайность, люминесценция, поглощение в ультрафиолетовой и  видимой областях, теплопроводность, смачиваемость жирами. Для определения некоторых из них сконструированы специальные приборы. Так на свойстве алмаза смачиваться жирами основан "Алмазный карандаш" ("Gem Diamond Pen"), снабжённый фетровым концом и заправленный специальными чернилами, которые оставляют сплошную черту на поверхности алмаза и пунктирную - на большинстве имитаций с высоким показателем преломления. 

Надёжный метод  идентификации алмазов - пропускание  рентгеновских лучей. Алмаз, в отличие  от большинства минералов, синтетических  камней и стёкол, прозрачен в рентгеновских лучах. 

При диагностике  алмазов следует учитывать и  включения, различаемые в наиболее высококачественных бриллиантах только при значительном увеличении. Их состав связан с глубинным происхождением алмаза и является очень характерным. Для сингенетических включений характерны оливин, пироп, в том числе с высоким содержанием кноррингитовой молекулы Mg3Cr2[SiO4]3, хромшпинелид, хромит, алмаз (более ранний), энстатит, диопсид, хромдиопсид, коэсит, пирротин, пентландит, рутил, ильменит, циркон и некоторые другие. Эпигенетические включения представлены гётитом, серпентином, графитом, гематитом, селлаитом, каолинитом, санидином и некоторыми другими. Встречаются иногда также включения, происхождение которых не совсем ясно. Например: мусковит, флогопит, биотит, кварц, магнетит, кианит. Однако наличие этих включений, особенно сингенетических, не встречаемых больше почти ни в одном ювелирном камне и поэтому помогающих при идентификации алмаза, отрицательно влияет на его стоимость. В связи с этим неоднократно предпринимались попытки удалить их каким-либо методом. В настоящее время практикуется уничтожение включений сжиганием их лучами лазера с последующей обработкой канала кислотой. Наличие такого канала, так же может служить диагностическим признаком алмаза. 

5. Синтетические  алмаз 

В 1694 году итальянские  учёные Дж. Аверани и К.А. Тарджони при попытке сплавить несколько  мелких алмазов в один крупный  обнаружили, что при сильном нагревании алмаз сгорает, как уголь. В 1772 году Антуан Лавуазье установил, что при сгорании алмаза образуется диоксид углерода. В 1814 году Гемфри Дэви и Майкл Фарадей окончательно доказали, что алмаз является химическим родственником угля и графита. 

Открытие натолкнуло учёных на мысль о возможности  искусственного создания алмаза. Первая попытка синтеза алмаза была предпринята в 1823 году основателем Харьковского университета Василием Каразиным, который при сухой перегонке древесины при сильном нагреве получил твёрдые кристаллы неизвестного вещества. В 1893 году профессор К. Д. Хрущов при быстром охлаждении расплавленного серебра, насыщенного углеродом, также получил кристаллы, царапавшие стекло и корунд. Его опыт был успешно повторён Анри Муассаном, заменившим серебро на железо. Позже было установлено, что в этих опытах синтезировался не алмаз, а карбид кремния (муассанимт), который имеет очень близкие к алмазу свойства. 

В 1879 году шотландский  химик Джеймс Хэнней обнаружил, что  при взаимодействии щелочных металлов с органическими соединениями происходит выделение углерода в виде чешуек графита и предположил, что при проведении подобных реакций в условиях высокого давления углерод может кристаллизоваться в форме алмаза. После ряда экспериментов, в которых смесь парафина, костяного масла и лития длительное время выдерживалась в запаянной нагретой до красного каления стальной трубе, ему удалось получить несколько кристаллов, которые после независимого исследования были признаны алмазами. В научном мире его открытие не было признано, так как считалось, что алмаз не может образовываться при столь низких давлениях и температурах. Повторное исследование образцов Хэннея, проведённое в 1943 году с применением рентгеновского анализа, подтвердило, что полученные кристаллы являются алмазами. Однако профессор К. Лонсдейл, проводившая анализ, вновь заявила, что эксперименты Хэннея являются мистификацией. В феврале 1953 года группе физиков шведской энергетической компании ASEAпри проведении одного из опытов по синтезу алмаза из графита удалось получить первые в мире искусственные алмазы. Давление составляло 80*108 МПа, температура 2500оС, выдержка во времени 2 минуты. В декабре 1954 года учёные фирмы "Дженерал Электрик Ко" создали искусственные алмазы размером около 0,8 мм. После этого синтез алмазов был организован в Бельгии, Великобритании, Японии. 

В 1961 году Институтом физики высоких давлений АН УССР была отработана промышленная технология синтеза  алмазов. Процесс осуществляется при  температуре 1800-2500о С и давлении более 50*102 МПа в присутствии катализаторов - хрома, никеля, железа, марганца, платины, кобальта и других металлов. Впоследствии было установлено, что алмазы образуются при кристаллизации углерода из его раствора в расплаве металла-катализатора. 

Синтез алмаза проводится в камере типа "чечевица" объёмом несколько кубических сантиметров. Нагревание осуществляется индукционным методом или прямым пропусканием электрического тока. При сближении пуасонов реакционная смесь графита с никелем (а также со слоистым пирофиллитом) сжимается, и давление в камере превышает 50*102 МПа. В результате происходит перекристаллизация гексагональной кристаллической решётки графита в кубическую структуру алмаза. Размер кристаллов алмаза зависит от времени синтеза. При времени реакции 3 минуты образуются кристаллы массой около 10 мг, а 30 минут - 70 мг. Наиболее прочные кристаллы размером до 0,5-0,8 мм; физико-механические свойства более крупных кристаллов хуже. 

В 1961 году появились  первые публикации фирмы "Du Pont" о  реализации идей получения алмаза путём  прямого фазового перехода из графита. Синтез производился с использованием энергии взрыва, или непосредственно из продуктов взрыва некоторых взрывчатых веществ, с отрицательным кислородным балансом, особенно удобен для получения алмазов тротил. Это наиболее дешёвый способ получения алмазов, однако, "взрывные алмазы" очень маленькие и пригодны лишь для абразивов и напылений. 

В 1963 году В.Ж. Эверсолом (США) был запатентован способ выращивания  алмазов из перенасыщенной углеводородом  газовой фазы (метана, ацетилена  или других углеводородов) при давлении ниже 10*102 МПа. Образующаяся избыточная поверхностная энергия на границе графит-воздух способствуют формированию зародышей алмазов. 

Современные способы  получения алмазов используют газовую  среду, состоящую из 95 % водорода и 5 % углесодержащего газа (пропана), а также высокочастотную плазму, сконцентрированную на подложке, где образуется сам алмаз. Температура газа от 700--850 °C при давлении в тридцать раз меньше атмосферного. В зависимости от технологии синтеза, скорость роста алмазов от 7 до 180 мкм/час на подложке. 

В 1970 году был  разработан метод получения крупных  синтетических кристаллов алмазов  ювелирного качества на затравках в  виде пластин. Однако стоимость выращивания  таких алмазов гораздо выше, чем  добыча природных. 

В настоящее  время выпускаются синтетические алмазы следующих видов: АСО - алмазы обычной прочности, АСР - алмазы повышенной прочности, АСВ - алмазы высокой прочности, АСК и АСС - алмазы монокристаллические. 

Размер алмазов  первых трёх видов 0,04-0,63 мм. Кроме того выпускаются несколько марок микропорошков с размером зёрен 1-60 мкм. Размер зёрен монокристаллических алмазов АСК и АСС до 1 мм. 

Выпускаются также  поликристаллические алмазы типа карбонадо, балласы, а также ряд синтетических  сверхтвёрдых материалов, приближающихся по физическим свойствам к природным. 

алмаз кристалл минерал синтетический 

Заключение 

Благодаря своим  уникальным свойствам этот минерал  прочно завоевал свое место в различных  сферах деятельности человека. Алмазные лезвия скальпелей имеют сверхтонкие края, что уменьшает ширину разрезов, это очень важное свойство для современной хирургии. Плюс такие лезвия остаются острыми гораздо дольше, чем стальные. Алмазы также применяются в лазерных устройствах для прижигания разрезов и ран. Алмаз состоят из углерода, и по этой причине он является идеальным материалом для использования в наших телах, так как не вызывает в организме иммунной реакции. Ученые в настоящий момент разрабатывают алмазные имплантаты, которые будут контролировать здоровье пациента или смогут взять на себя роль недееспособных тканей. Также ученые мечтают о крошечных машинах из алмазов, который в один прекрасный день позволят ускорить лечение и диагностику пациентов. Кристалл алмаза может позволить нескольким сигналам на разных частотах пройти одновременно по кабелю. Это дает возможность использовать его в области телекоммуникаций. Кроме того алмаз способен выдерживать высокое напряжение и изменение температуры. Тепло проходит через алмаз гораздо быстрее, чем через медь. Это делает его применение полезным в местах, где много тепла генерируется на небольшом пространстве. Микроэлектронные устройства один из таких примеров. Алмазные окна обеспечивают защиту в некоторых научных экспериментах, например в испытаниях с использованием кислот или расплавленной пластмассы. Алмазные окна также очень прозрачны, что позволяет следить за состоянием вещества, применяя инфракрасные измерительные приборы. Алмазное бурение - это наиболее эффективный и экономичный способ бурения горных пород. Алмаз прочно занял место в промышленности, не одно современное производство не обходится без алмазных инструментов: сверл, фрез, резцов, шлифовальных кругов, стеклорезов. 

Информация о работе Этот многоликий алмаз