Автор: Пользователь скрыл имя, 19 Февраля 2013 в 17:13, реферат
Под нефтеотдачей продуктивного пласта в нефтепромысловой практике понимается степень использования природных запасов нефти. Ввиду того, что естественные запасы нефти в недрах земли небезграничны, а открытие новых нефтяных месторождений требует затраты огромных средств и времени; достижение высокой нефтеотдачи пластов уже открытых месторождений имеет исключительно важное значение для страны.
ВВЕДЕНИЕ
Основной отдел
НЕФТЕОТДАЧА ПЛАСТОВ..
СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО НЕФТЕОТДАЧЕ ПЛАСТА
НЕКОТОРЫЕ ВОПРОСЫ МЕТОДИКИ ОПРЕДЕЛЕНИЯ - КОЭФФИЦИЕНТОВ НЕФТЕОТДАЧИ ПЛАСТОВ ПО ГЕОЛОГО-ПРОМЫСЛОВЫМ ДАННЫМ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.
На характер изменения кажущихся сопротивлений в зоне ВНК оказывает влияние не только нефтегазонасыщенность пласта, но и физические свойства коллекторов, сопротивление вмещающих пород, неравномерное проникновение фильтрата глинистого раствора в пласт и др.
Приведенные примеры показывают, что расчлененность пласта и большое количество алевритовых и аргиллитовых прослоев не способствуют четкому определению ВНК по геофизическим данным и что точная интерпретация геофизических материалов должна основываться на данных отбора керна.
Различные результаты испытания скважин в переходной зоне свидетельствуют о том, что интерпретация физической сущности переходной зоны, основанная только на данных промысловой геофизики, субъективна и несовершенна; поэтому в одних случаях к переходной зоне относят часть нефтяной залежи, а в других к той же зоне относят водоносную часть пласта.
В действительности же под
понятием ВНК следует подразумевать
поверхность раздела между
Для анализа разработки крупных нефтяных залежей большое значение имеет определение текущего положения водо-нефтяного контакта. Для этого необходимо в пределах водоплавающей части крупных залежей иметь специальные неперфорированные скважины, в которых должны вестись радиометрические исследования за подъемом водо-нефтяного контакта в процессе разработки залежей.
Точность определения коэффициента нефтеотдачи пласта по геолого-промысловым данным в значительной степени зависит от знания объема пор, насыщенных нефтью. Между тем до последнего времени даже по крупнейшим нефтяным залежам страны нет ни одного достоверного определения коэффициента нефтенасыщенности по кернам, отобранным на безводных растворах. Такое положение в значительной степени отражается на точности подсчета первоначальных запасов нефти и на величинах коэффициентов нефтеотдачи пластов, определяемых по геолого-промысловым данным.
Отсутствие каких бы то ни было данных о величине истинного коэффициента нефтенасыщенности пород обусловило широкое внедрение в промысловую практику геофизических методов определения нефтенасыщенности коллекторов. Так, в Башкирии, Татарин, Куйбышевской области и других нефтяных районах внедрение этих методов дало хорошие показатели.
Для совершенствования методики определения нефтенасыщенности пластов и их практического внедрения в практику нефтепромыслового дела во ВНИИ при подсчете запасов нефти по Шкаповскому месторождению, Миннибаевской., Абдрахмановской и Павловской площадям были составлены карты нефтенасыщенности по отдельным пластам и горизонту Д в целом, которые доказывают возможность широкого использования данных Геофизических методов.
По картам нефтенасыщенности пластов были выявлены зоны с различной нефтенасыщенностью. Так, например, по Миннибаевской площади минимальный предел нефтенасыщенности пород составляет 58%, максимальный - 94%, средний по всему пласту - 87%; по Абдрахмановской площади минимальная величина нефтенасыщенности достигает 62%, максимальная - 94%, средняя-85%; по Павловской площади минимальная величина нефтенасыщенности равна 66%, максимальная - 93%, средняя - 82%; по Шкаповскому месторождению получены следующие данные: по пласту Д (верхняя пачка) минимальный коэффициент нефтенасыщенности (в долях единицы) равен 0,60, максимальный - 0,92. средний - 0,84; по пласту Д минимальный коэффициент нефтенасыщенности достигает 0,61, максимальный - 0,92, средний - 0,81. Эти данные показывают, что в целом величины нефтенасыщенности пластов, определенные по промыслово-геофизическим исследованиям скважин, вполне согласуются с геологическими представлениями о степени нефтенасыщенности пород.
Особо следует отметить, что вследствие ограниченной высоты капиллярного подъема воды процент воды в нефтяной залежи в той части ее, которая подстилается водой, будет увеличиваться по мере уменьшения мощности нефтенасыщенной части пласта, Исследования коэффициента нефтенасыщенности пород по крупнейшим нефтяным залежам платформенной области показали, что наибольшая нефтенасыщенность коллекторов, достигающая 92%, как и следовало ожидать, приурочена к повышенной части структуры и расположена в пределах внутреннего контура нефтеносности, а за его пределами, по направлению к внешнему контуру, нефтенасыщеностъ пласта постепенно убывает до 80% и далее в краевой части залежи снижается до 60%.
В качестве примера можно привести Шкаповское месторождение. Здесь в самой возвышенной сводовой части величина нефтенасыщенности коллекторов достигает 90-92%. Но по мере удаления от внутреннего контура нефтеносности к внешнему постепенно эта величина уменьшается и минимальное значение нефтенасыщенности доходит до 60%. Это очень важное обстоятельство и здесь никаких противоречий с нашими геологическими представлениями нет.
Таким образом, изучение объема
порового пространства коллекторов, занятых
нефтью, на примере крупнейших залежей
Русской, платформы позволяет
Следовательно, при определении величины нефтеотдачи заводненных участков пласта следует пользоваться не средними величинами нефтенасыщенности пластов по всей залежи, а величиной нефтенасыщенности, характерной для данного участка. Если для крутозалегающих нефтеносных пластов различие в величинах нефтенасыщенности по разрезу не оказывает существенного влияния на подсчет запасов нефти и определение величины нефтеотдачи пластов по геолого-промысловым данным, то для платформенных залежей это может привести к большим ошибкам.
Следует особо отметить, что до сих пор величины нефтенасыщенности пород, определенные геофизическими методами, не удалось сравнить с истинным нефтенасыщением пород и установить их сходимость.
Определение нефтеотдачи под действием упругих свойств жидкости и породы.
Задача 1.
Используя теорию упругого режима, разработанную В.Н. Щелкачевым, определить количество нефти, которое можно получить из залежи только за счет упругих свойств среды внутри контура нефтеносности при падении средневзвешенного по площади давления в залежи до давления насыщения.
Залежь, ограниченная контуром нефтеносности, имеет площадь - 1200 га; средняя мощность залежи = 12 м и пористость породы т = 22. Количество связанной воды = 20%. Начальное пластовое давление = 180 кгс/см2. Давление насыщения = 80 кгс/см2. Пластовая температура = 54,5° С. Добыча нефти за время падения пластового давления на (100 кгс составила 5 • 106 м3.
Объемный коэффициент только вследствие упругости нефти изменяется при пластовой температуре = 54,5° С и падении пластового давления с = 180 кгс/см2 до = 80 кгс/см2 от = 1,02 до = 1,026 см2/кгс (рис.3).
На основе этих данных можно подсчитать коэффициент сжимаемости нефти по формуле [1]
Коэффициент сжимаемости пор породы примем равным на 1 кгс/см2.
Коэффициент упругоемкости залежи подсчитаем по формуле
Искомый запас нефти, определяемый действием упругих сил, найдем по формуле
Для определения процента нефтеотдачи в зависимости от упругих свойств среды подсчитаем общий начальный объем нефти в залежи (в пластовых условиях):
Находим процент нефтеотдачи в зависимости от упругих свойств среды:
= 1,92% общего запаса нефти.
Получено нефти в результате внедрения воды из законтурной области
5.10 - 478 • 10 = 4522 • 103 м3.
Падение давления в пределах
контура нефтеносности
Рассмотрим законтурную кольцевую площадь = 12 000 га, занятую напорной водой, и примем при данных условиях коэффициент сжимаемости воды
Тогда коэффициент упругоемкости для указанной законтурной обводненной части пласта найдем по формуле
Как видно из сравнения коэффициентов упругоемкости для нефтяной и обводненной частей пласта, падение давления за контуром будет менее интенсивным, чем внутри контура.
Предположим, что средневзвешенное давление внутри рассматриваемой кольцевой площади уменьшится за тот же промежуток времени на
В этом случае количество воды, которое поступит в поры пласта под действием упругой энергии в пределах контура нефтеносности, будет
Таким образом, через начальный контур нефтеносности в результате гидродинамического (неупругого) перемещения воды в пласт поступит следующий объем жидкости:
Остальная часть (до 5-106м3) представляет суммарный запас, определяемый действием упругих сил. Иначе говоря, больше половины (приблизительно 51,7%) добычи нефти будет получено за счет упругой энергии нефти, породы и воды, расположенных в пределах начального контура нефтеносности и в его непосредственном окружении.
Определение коэффициента нефтеотдачи и продолжительности процесса при площадном заводнении
Задача 2.
Площадное заводнение нефтяной залежи ведется по пятиконечной системе (рис.3). Площадь элемента заложи 4, средняя мощность = 10 м; средний коэффициент пористости породи т - 0,25; содержание связанной воды равно 20% от объема пор.
Нефтенасыщенность породы к моменту начала процесса заводнения = 0,55; вязкость нефти в пластовых условиях =11 сантипуазам; объемный коэффициент нефти 1,12; вязкость воды = 1 сантипуазу. Объемный коэффициент воды = 1.
Требуется определить ориентировочно продолжительность процесса заводнения и количество нефти, которое будет получено с каждого элемента площади, если окончание процесса приурочено к достижению степени обводнения продукции эксплуатационных скважин, выражающейся величиной - 97%, а интенсивность нагнетания воды равна сутки на каждую инжекционную скважину.
При пятиточечной системе
расстояние между инжекционными
скважинами равно стороне квадрата-
Подсчитаем коэффициент М, определяемый свойствами Пластовых жидкостей, по формуле
Среднее расстояние от инжекционных скважин до контура воды к моменту прорыва ее в эксплуатационные скважины
Для этих условий величину нефтеотдачи к моменту прорыва воды в эксплуатационные скважины можно определить из графика (рис.5) как = 36%. Коэффициент заводнения для пятиточечной системы - 72,3%.
Теперь имеются все
данные для вычисления продолжительности
первого периода получения
Средний удельный расход воды в течение второго периода заводнения, принимая изменение обводнения равномерным, определится по формуле
где - степень конечного обводнения продукции эксплуатационных скважин, равная 97%, или 0,97.
Конечная нефтеотдача при = 97% и = 0,081 равна 61%, т.е. = 0,61.
Продолжительность второго
периода получения водо-
Общий срок процесса заводнения 786 + 3385 = 4171 день, или около 11,4 года.
За время заводнения с каждого элемента площади будет добыто нефти.
Рис.1 Распределение насыщенности в пласте при вытеснении нефти водой.
Рис.2. График зависимости объемного коэффициента нефти от давления и температуры.
Рис.4. Нефтеотдача к моменту прогрева воды в эксплуатационные скважины в зависимости от свойств нефти и среднего расстояния от нагнетательных скважин до контура нефтеносности.
ЗАКЛЮЧЕНИЕ
Особо следует подчеркнуть
необходимость экономических
Необходимо проанализировать геолого-промысловый материал по большому количеству пластов, законченных разработкой или находящихся в конечной стадии эксплуатации. Надо пробурить ряд специальных оценочных скважин для отбора керна, чтобы выяснить коэффициент нефтенасыщения (или водонасыщенности) на новых, еще не разрабатываемых месторождениях и коэффициент остаточной нефтенасыщенности на разработанных залежах и заводненных частях нефтяных пластов в условиях, сохраняющих пластовое соотношение водонасыщения. Дальнейшее развитие должны получить теоретические и экспериментальные работы по изучению процессов движения нефти, воды и газа в пористой среде.
Большое научное и практическое
значение приобретает изучение геологических
критериев неоднородности нефтесодержащих
пластов. Известно, что степень неоднородности
существенно влияет на установление
оптимальных скоростей
Научные исследования по определению
достигнутых коэффициентов
Информация о работе Извлечение нефти из пласта газами высокого давления