Автор: Пользователь скрыл имя, 22 Апреля 2013 в 11:15, реферат
Изморфизм (от др.-греч. ἴσος — «равный, одинаковый, подобный» и μορφή — «форма») - этот термин был впервые введен в химической науке Э. Митчерлихом в 1819 г. Первоначально он означал внешнее сходство кристаллической формы у веществ, родственных по химическому составу. Современное определение понятия изоморфизма может быть выражено следующим образом: изоморфизм — свойство элементов замещать друг друга в структуре минерала. Изоморфизм возможен при одинаковых координационных числах атомов, а в ковалентных соединениях при тождественной конфигурации связей. Степень совершенства (при данных температуре и давлении) изоморфизма определяется близостью межатомных расстояний, состоянием химической связи и строением электронной оболочки атомов.
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение
высшего профессионального образования
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Реферат по кристаллографии на тему: Изоморфизм
Студент: Жамбалов
С.Б.
Научный руководитель: Летникова А.Ф.
Иркутск 2013
Изморфизм (от др.-греч. ἴσος — «равный, одинаковый, подобный» и μορφή — «форма») - этот термин был впервые введен в химической науке Э. Митчерлихом в 1819 г. Первоначально он означал внешнее сходство кристаллической формы у веществ, родственных по химическому составу. Современное определение понятия изоморфизма может быть выражено следующим образом: изоморфизм — свойство элементов замещать друг друга в структуре минерала. Изоморфизм возможен при одинаковых координационных числах атомов, а в ковалентных соединениях при тождественной конфигурации связей. Степень совершенства (при данных температуре и давлении) изоморфизма определяется близостью межатомных расстояний, состоянием химической связи и строением электронной оболочки атомов.
При изоморфизме ионы (атомы) одного элемента замещают в кристаллической постройке минерала ионы (атомы) другого элемента.
В более сложных случаях
Помимо изовалентного и
Изоморфизмом в кристаллохимии называют два несколько разных явления:
Изоструктурными называются вещества с одинаковой кристаллической структурой. Изоморфными — те изоструктурные вещества, которые состоят из химически схожих компонентов. Это близость структуры и формы кристаллов различного (но родственного) химического состава. В этом смысле изоструктурными можно назвать NaCl, MgO и FeN, а изоморфными MgO и FeO. Изоморфизм структур вместе с другими важнейшими категориями кристаллохимии: полиморфизмом, морфотропией и структурной гомологией является важнейшим свойством кристаллических решеток.
С другой стороны, термином «изоморфизм» обозначается явление взаимозамещения атомов и иных структурных единиц в кристаллических фазах переменного состава. Такие вещества также называют изоморфными смесями или твердыми растворами. В этом смысле понятие изоморфизма употребляется гораздо чаще.
Типы изоморфных растворов
Растворы замещения — один из наиболее распространенных типов соединений переменного состава. Такие соединения имеют фазовые диаграммы следующего вида.
Изоморфизм с
заполнением пространства проис
Растворы внедрения (твердые растворы второго рода) это растворы, в которых атомы примеси не замещают атомы минерала хозяина, а располагаются в промежутках между ними. Растворяющиеся атомы входят в промежутки между атомами матрицы, статистически заселяя новую не занятую ранее позицию. Иногда атомы матрицы называют узлами и тогда говорят, что примесь входит в междуузлия. Растворимость по типу внедрения обычно невелика — порядка нескольких процентов и лишь в редких случаях достигает 10 %. В растворах замещения необходимое условие — схожий характер связи с различных компонентах. В растворах внедрения тип связи может быть совершенно иным.
Встречается в тех случаях, когда размеры атомов обоих компонентов значительно различаются. Он особенно характерен для систем металл — неметалл, причем размер атома неметалла значительно меньше, чем размер атома металла. Наименьшие атомы будут у следующих элементов: H (0,46), N (0,71), C (0,77). Они часто образуют с металлами твердые растворы второго рода, носящие названия гидридов, нитридов и карбидов. Многие из них являются тугоплавкими твердыми сплавами и широко применяются в промышленности.
Классический пример раствора внедрения — аустенит. Это раствор углерода в γ-модификации железа. В качестве растворов внедрения можно рассматривать силикаты с полостями и каналами, в которые входит переменное количество различных ионов. Например в берилле в каналы могут входить ионы и вода.
Другой замечательный пример раствора включения: образование гидратов некоторых металлов, в особенности палладия. Палладий может растворять огромное количество водорода, в несколько раз превышающее его объем. Водород отдает свой электрон металлу и он обобществляется. Лишенный электрона водород превращается в исключительно мелкий ион, который распределяется по межузлиям палладиевой решетки, не искажая её.
Растворы вычитания — Это фазы переменного состава,
в которых при наличии устойчивой решетки
одного из компонентов, содержание другого
компонента варьирует, так как он замещается
вакансиями. Такие структуры называют дефектными или дефици
В качестве примера фазы
вычитания можно привести пирро
Современная термодинамика трактует способность соединений образовывать твердые растворы с общих позиций минимума свободной энергии.
Судьба минерала определяется тем, выгодно ли энергетически его существование в виде чистых соединений, или же, напротив, выигрыш в свободной энергии обеспечивается его нахождением в форме твердого раствора. Конкретный выбор зависит от конкуренции двух основных факторов противоположной направленности: 1) затраты энергии на деформацию кристаллической структуры при нарушении ее идеальности в результате появления в регулярных позициях структуры атомов иного размера (безразлично — более крупных или более мелких) и/или иного заряда (валентности) и 2) выигрыша энергии за счет роста конфигурационной энтропии при увеличении беспорядка в системе [3].
Конфигурационная энтропия связана с числом вариантов случайного размещения некоторой определенной доли «своих» и «чужих» атомов в одних и тех же позициях кристаллической структуры. Чем больше число таких вариантов, тем больше значение конфигурационной энтропии S. Она может быть рассчитана по известной формуле Больцмана , где k — константа Больцмана, W — термодинамическая вероятность состояния системы. Для твердых растворов W — это просто число перестановок местами атомов разных сортов в заданных позициях структуры; W = 1 для чистого кристалла и всегда больше единицы для смешанного. Ясно, что число таких перестановок зависит от состава системы, в частности от числа разных типов атомов (два, три или более), причем увеличение числа компонентов ведет к росту значений конфигурационной энтропии. Существенно также, что даже появление небольшой доли примеси ведет сразу к большому росту энтропии смешения. Поэтому так трудно получить или найти в природе истинно чистые вещества.
Для того чтобы элементы замещали
друг друга должно выполняться несколько
условий. В первую очередь должно
выполняться так называемое пра
Впрочем, известны примеры, когда близкие по размеру ионы не замещают друг друга. Так, классические ионные радиусы Na и Cu практически одинаковы, около 1 Å, и нет геометрических препятствий для взаимных замещений между этими ионами. В таких случаях причиной несмесимости, то есть невозможности образовать твёрдый раствор, является разный характер химической связи в соединениях Na и Cu, так как разность их электроотрицательностей составляет 0,9. И если в первом случае образуются чисто ионные связи, то во втором частично ковалентный характер связи становится весьма существенным. Подобны же причины несмесимости в твёрдом состоянии близких по размеру атомов Ca и Hg, Sr и Pb, K и Ag и др.
Возможно четыре варианта упорядоченности замещающих атомов:
1. Распределение атомов
2. Однако между этими двумя
случаями можно расположить
3. Случай В характеризуется не только
ближним порядком, в нем наблюдается и
дальний порядок. Однако он не достигает
100 %. Большинство интерметаллических
4. Распределение полностью
Из сказанного ясно, что не существует резких границ между твердым раствором и соединением. Упорядоченные твердые растворы и не полностью упорядоченные соединения являются теми самыми случаями, которые обычно реализуются в природе и в лаборатории.