Химический состав гидросферы

Автор: Пользователь скрыл имя, 24 Января 2012 в 10:02, курсовая работа

Описание работы

Вода – самое удивительное природное соединение на Земле – источник жизни и условие ее формирования. «Нет природного тела, которое могло бы сравниться с ней по влиянию на ход основных, самых грандиозных геологических процессов», – писал В.И. Вернадский (1934).
Вода стоит особняком в истории нашей планеты. Э. Дюбуа образно заметил, что «жизнь есть одушевле

Содержание

Содержание
Стр.

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………
Глава 1. Классификация и характеристика вод гидросферы…………...…………….
Глава 2. Геохимический состав вод гидросферы……………………….…..................
2.1. Минерализация вод….……………………………………………………
2.2. Ионный состав вод………….………………………….............................
2.3. Газовый состав вод………………………………………………………..
2.4. Щелочно-кислотные условия вод….…………………………………….
2.5. Окислительно-восстановительные условия вод………………………...
Глава 3. Геохимическая динамика вод гидросферы...………………………………...
Глава 4. Особенности химических процессов в гидросфере…………………………
Глава 5. Антропогенное воздействие на геохимический состав вод гидросферы….
5.1. Загрязнение Мирового океана…………………………………………..
5.2. Загрязнение поверхностных вод………………………………………..
5.3. Загрязнение Каспийского моря…………………………………………
Заключение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ……………..
Выводы…………………………………………………………………………………..
Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………….
Приложение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Работа содержит 1 файл

Содержание.doc

— 650.50 Кб (Скачать)

     Ионный  состав вод определяет их многие геохимические  свойства, а также возможности использования в хозяйственной деятельности.

     Виды  вод по анионному составу:

  • гидрокарбонатные;
  • сульфатные;
  • хлоридные.

         Дальнейшее подразделение природных вод производится по катионному составу и соотношениям ионов.  

     2.3. Газовый состав вод 

     Во  всех природных водах в растворенном состоянии содержатся азот, кислород, углекислый и другие газы. Количество газов, которое может раствориться в морской воде, зависит от ее солености, гидростатического давления и температуры. Чем больше соленость и выше температура, тем меньше газов может раствориться в морской воде, и наоборот (Самарина В. С., 2007).

     Кислород, растворенный в океанской воде, берется  из воздуха или является результатом  фотосинтеза растений, произрастающих под водой. Он расходуется на дыхание живых организмов и окисление органических остатков. Углекислый газ, растворенный в воде, берется из воздуха или выделяется при дыхании организмов и окислении органических остатков. Он используется растениями при фотосинтезе. Растения и бактерии, живущие в воде, извлекают из углекислого газа на построение своих тканей около 100 млрд. т углерода в год (Лозановская И. Н., 2006).

     В холодных (полярных) областях планеты океан извлекает кислород и углекислый газ из воздуха, газы растворяются в воде, и течения переносят их в глубинные слои и тропики. Кислород обеспечивает в глубинных слоях условия жизни животных и растений. Углекислый газ выделяется в тропиках в атмосферу. Содержание углекислого газа в атмосфере в 60 раз меньше, чем в океане. Поэтому последний можно рассматривать как хранилище запасов углекислого газа (Крайнов С. Р., 2005).

     Для некоторых частей Мирового океана (Черное море, Оманский залив) характерно сероводородное заражение на глубинах 200 - 2000 м, источником которого являются ювенильные газы, а также химические реакции восстановления сульфатов, происходящие в осадках с участием анаэробных бактерий.

     Воды  Мирового океана служат для химических элементов средой превращений, с  одной стороны, и транспортным средством, с другой. В результате многих химических и биохимических преобразований вещества находятся в нем в растворенном, коллоидном и взвешенном виде, свободном состоянии и соединениях. Это означает, что Мировой океан является «геохимическим реактором», который работает на тепловой и световой энергии Солнца (Беркелиева Л. А., Шакирова Ф. Н., 2007). 

     2.4. Щелочно-кислотные условия вод 

     Характеризуются величиной pH – отрицательным логарифмом концентрации водородных ионов. От изменения  этого параметра существенно  зависит растворимость различных соединений. Так, осаждение из растворов гидроксидов металлов зависит, главным образом, от соотношения двух параметров: величины pH и концентрации ионов металлов в растворе.  

     Классы  вод по щелочности-кислотности (Крайнов С. Р., 2005):

     Сильнокислые (pH < 3-4). Распространены, как правило, на небольших площадях. Возникновение обычно связано с окислением сульфидов, проявлениями вулканической деятельности. Широко распространены в техногенных ландшафтах.

     Слабокислые (рН – от 3-4 до 6,5). Кислотность обусловлена разложением органических веществ. Широко распространены в гумидных ландшафтах.

     Нейтральные и слабощелочные (рН от 6,5 до 8,5). Характерны для аридных ландшафтов, в условиях более высокой концентрации карбонатных ионов.

     Сильнощелочные (рН > 8,5) – содовые воды. Высокая щёлочность обусловлена присутствием NaHCO3.

     Органические  соединения обладают способностью усреднять  сильнокислую и сильнощелочную среду. Слабые органические кислоты нейтрализуют щёлочи и делают щелочную реакцию  более слабой, а слабые органические основания таким же образом нейтрализуют сильные кислоты.

 

     2.5.Окислительно-восстановительные условия вод

 

     Окисление – отдача электронов, восстановление – их присоединение.

     Важнейший окислитель в ландшафтных средах – кислород, что обусловлено его высоким кларком и химической активностью. Важные окислители – SO42-, CO2, NO3-, Fe3+ и др. Важнейшие восстановители – H2, H2S, CH4 и другие органические соединения, Fe2+ и др. Один и тот же элемент, в зависимости от ионной формы его нахождения, может быть либо окислителем, либо восстановителем (Fe, Mn…) (Brookins D.G., 1987).

     Так как в любых химических процессах  окисление всегда сопряжено с  восстановлением и наоборот, об окислительных  или восстановительных реакциях говорят применительно к конкретным ионам или группам ионов. (Окисление в виде реакции с кислородом сопровождается восстановлением кислорода, а восстановление сульфатов или соединений трёхвалентного железа при взаимодействии с органическими соединениями – окислением этих органических соединений) (Ложниченко О. В., 2005).

     Любая среда, в которой протекают окислительно-восстановительные  реакции, может характеризоваться  уровнем окисленности (или восстановленности). Количественный показатель – окислительно-восстановительный  потенциал (Eh). Он существенно влияет на характер миграции многих химических элементов, нередко являясь определяющим параметром. Пример: активная миграция Fe2+ в северных болотах в условиях низкого Eh. Воды засушливых степей и пустынь с высоким Eh неблагоприятны для миграции Fe, так как в этих условиях железо находится в трёхвалентной форме, образуя труднорастворимые соединения (Brookins D.G., 1987).

     Классы  вод по окислительно-восстановительным  условиям:

  1. Кислородные воды. Характерно присутствие свободного кислорода, поступающего из воздуха или за счёт фотосинтеза водных растений. Eh выше +0,15 В, часто выше 0,4 В. железо обычно в трёхвалентной форме. Воды с высокой окислительной способностью, в них действуют аэробные бактерии, окисляющие органические вещества.
  2. Глеевые воды. Восстановительные без сероводорода. Формируются там, где мало свободного кислорода и много органических остатков. Органические вещества окисляются анаэробными бактериями за счёт кислорода неорганических соединений. Fe, Mn – двухвалентны, имеют высокую подвижность. Eh всегда ниже 0Б4 В, часто ниже 0.
  3. Сероводородные воды. Содержат H2S, HS-. Возникают в бескислородных условиях при высоких содержаниях SO42-, где анаэробные бактерии окисляют органические вещества за счёт восстановления сульфатов. Характерны для солончаков, илов солёных озёр, глубоких подземных вод в некоторых районах, для побережий, подпитываемых морскими водами (мангры). Условия для осаждения металлов. Fe и многие другие металлы не мигрируют, так как образуют труднорастворимые сульфиды.

     Глава 3. Геохимическая динамика вод гидросферы

 

     Круговорот  основных элементов в биосфере –  это многократное участие веществ  в процессах, происходящих в атмосфере, гидросфере и литосфере. Особое значение имеют круговороты кислорода, углерода, азота, серы и фосфора. Аргон, неон, гелий, криптон, ксенон не принимают участия в обменных реакциях организма и носят название инертных газов (Соколов В.С., 1971).

     Кларки химических элементов, числа, выражающие среднее содержание элементов в литосфере, земном ядре, Земле в целом, атмосфере, гидросфере, живых организмах, породах Луны, атмосфере Солнца, звезд и т.д. Различают К. х. э. массовые (в %, г/т и др.) и атомные (в % от числа атомов). Элементы с кларками менее 0,01-0,001% наз. редкими, если при этом они обладают слабой способностью к концентрации - редкими рассеянными, напр. кларки U и Вr в литосфере соотв. равны 2,5.10-4 и 2,1.10-4%, но U - редкий элемент (известно 104 минерала, содержащих U), а Вr - редкий рассеянный (известен лишь один его собственный минерал). При анализе величин атомных К. х. э. выявляется еще большее преобладание кислорода и др. легких элементов. По закону Кларка-Вернадского (о всеобщем рассеянии химических элементов), в любом объекте природной системы находятся все известные на Земле элементы. В литосфере и Земле в целом преобладают легкие атомы (включая Fe), в земной коре - элементы с четными порядковыми номерами и четными атомными массами, особенно с массами, кратными 4 (в них преобладают изотопы с массой, кратной 4). Наиболее высокие кларки у элементов, атомные ядра которых содержат четное число протонов и нейтронов. Согласно основному геохимическому закону (В. Гольдшмидт), кларки химических элементов зависят от строения атомного ядра, а распределение элементов, связанное с их миграцией, - от строения электронных оболочек, определяющих химические свойства атомов. Однако это верно только для космоса в целом. Миграция элементов также зависит от кларков, которые во многом определяют содержание элементов в растворах, расплавах, их способность к минералообразованию, осаждению (Вернадский В.И., 1934).

     Гидросфера  находится в состоянии непрерывного движения, развития и обновления. Ежегодно с поверхности Земли испаряется около 0,5 млн. км3 воды, что составляет половину объема всех водоемов суши. Водяные пары атмосферы обновляются в течение 10 сут. Вода рек в результате стока сменяется каждые 12 сут, вода озер обновляется каждые 10 лет. Вода Мирового океана полностью сменяется каждые 3 тыс. лет, а в самой малоподвижной форме воды - ледниках полный водообмен происходит за 8,5 тыс. лет.

     Химические  элементы в гидросфере, так же как  и в земной коре, представлены разнообразными формами нахождения, геохимия которых  неодинакова. Наиболее характерные  для гидросферы формы – простые  и сложные ионы, а также молекулы, находящиеся в состоянии сильно разбавленных растворов. Весьма распространены ионы, сорбционно связанные с частицами коллоидных и субколлоидных размеров, находящиеся в морской воде в виде тонкой взвеси. Третью группу форм составляют элементы, входящие в состав мертвого органического вещества. Значительная масса химических элементов связана в живых организмах, населяющих Мировой океан. Элементы могут переходить из одной формы нахождения в другую. Например, ион, находящийся в растворе, может быть сорбирован частицей взвеси и в дальнейшем разделяет судьбу взвешенных частиц и не подчиняется законам растворов.

     Обратимся к элементам и соединениям, находящимся  в океанической воде в растворенном состоянии. Общее количество растворенных соединений в морской воде называется соленостью (ее обозначают заглавной буквой латинского алфавита S). Соленость в поверхностных слоях океанов и окраинных морей колеблется от 3,2 до 4,0 %, т. е. в 1 кг воды содержится 32–37 г растворимых солей.   Содержание солей в морской воде измеряется в тысячных долях (промиллях), которые обозначаются знаком ‰. 
Во внутриконтинентальных морях соленость меняется более сильно. В среднем соленость вод океана равна 33‰ (Афанасьев Т. П., 2005).

     Речные  воды - главный источник поступления растворимых соединений в Мировой океан. Его объем беспрестанно пополняется за счет речного стока, который оценивается величиной 37 тыс. км3 в год и стока ледников (около 7 тыс. км3 в год). Следовательно, менее чем за 50 тыс. лет в океан поступает столько же воды, сколько в нем имеется в настоящее время. Разумеется, круговорот воды обеспечивает примерно постоянный объем океана. Вместе с водой поступают растворенные вещества. Геохимия морских и речных вод неразрывно связана. Вовлечение рассеянных элементов в водную миграцию на суше является первым этапом этого взаимодействия. В речных водах содержатся разнообразные растворимые формы химических элементов. Текучие воды на поверхности суши обычно имеют величину рН от 4,5 до 8,5. При таких значениях рН многие металлы (цинк, хром, медь, бериллий, свинец, кадмий, никель, кобальт и др.) могут находиться в растворенном состоянии в форме ионов, выпадать в осадок и вновь переходить в раствор. Но их фактическое содержание в природных водах так незначительно, что регулирующее действие рН не сказывается (Балашов Л. С., 2008).

     Концентрация  металлов в чистой речной воде часто  ниже их содержания в растворах после  осаждения гидроксидов. В некоторых  случаях, когда образуются ничтожно малые количества нерастворимых  гидроксидов металлов, они находятся в виде субколлоидных сгустков, которые не выпадают в осадок, а в состоянии разбавленных коллоидных растворов активно мигрируют. В то же время находящиеся в растворе элементы могут активно сорбироваться гелями соединений макроэлементов (в первую очередь гидроксидами железа), высокодисперсными частицами глин и осаждаться в таких условиях, в которых теоретически этого не должно быть (Щербина В. В., 1972).

     Значительная  часть рассеянных металлов присутствует в природных водах не в виде простых ионов, а в форме комплексных соединений. В этом случае устойчивость элементов в растворе сильно возрастает и не ограничивается теми щелочно-кислотными и окислительно-восстановительными условиями, в которых может находиться в растворе простой ион. Весьма важное значение для водной миграции имеют комплексные органические, особенно внутрикомплексные (хелатные) соединения металлов.

     Геохимические и биоклиматические различия водосборных  площадей и разнообразие форм химических элементов обусловливают сильную  вариацию их концентраций в речных водах. Поэтому определение величины средней концентрации элементов в водах суши еще более условно, чем в океане.                

     Минерализация воды в реках сильно меняется, поэтому  средняя величина минерализации  речных вод мира разными авторами определяется неодинаково. В соответствии с данными Д.А. Ливингстона (1963) мы приняли среднюю, равную 120 мг/л. Исходя из этой цифры и объема годового стока воды, количество растворенных соединений, ежегодно поступающих в систему Мирового океана, составляет около 4,9 млрд т. Масса элементов в пересчете на 120 мг/л сухого остатка приведена в третьей графе табл. 6.

     Хотя  общая минерализация пресных  вод значительно меньше морских, глобальный вынос химических элементов  в растворенном состоянии с суши весьма значителен. Для кальция, натрия, магния, кремния, хлора, серы он равен сотням миллионов тонн, для калия – десяткам, для фтора, стронция, фосфора – нескольким миллионам тонн в год. Бром, иод, бор, а также цинк, марганец, медь, железо, алюминий выносятся водами суши в количестве сотен тысяч тонн в год. Значительная часть других металлов удаляется с водным стоком в количестве десятков тысяч тонн ежегодно. Лишь для некоторых элементов масса годового выноса измеряется тысячами тонн. Таковы кадмий, селен, торий, ртуть, галлий (Ложниченко О. В., 2005).

Информация о работе Химический состав гидросферы