Характеристика минералов

Автор: Пользователь скрыл имя, 15 Апреля 2012 в 10:51, контрольная работа

Описание работы

ВОЛЬФРАМАТЫ — класс минералов, соли вольфрамовой кислоты Н2WO4. Для большинства вольфраматов природных характерен комплексный тетраэдрический радикал [WO4]2-, устойчивый в соединениях с крупными катионами Ca2+ и Pb2+. Таковыми являются шеелит CaWO4 и штольцит PbWO4. Эта группа вольфраматов природных кристаллизуется в тетрагональной сингонии, структуры островные, кристаллы изометричные или таблитчатые с квадратными сечениями, со спайностью по (101). Другие группы вольфраматов природных характеризуются наличием в составе сравнительно мелких катионов (Fe2+, Mn2+, Zn2+). Тетраэдр WO42- переходит в искажённую октаэдрическую группировку WO6, сингония снижается до моноклинной, структуры становятся цепочечными, приближающимися к структурам сложных окислов. Кристаллы этой группы вольфраматов природных обычно плоскоудлинённые с продольной спайностью по (010), окраска бурая, тёмно-коричневая. Представители моноклинных вольфраматов природных — вольфрамит (Fe, Mn)WO4 и санмартинит (Zn, Fe)WO4. В природе известны всего два водных вольфрамата природных — ферритунгстит (Ca, Fe3+, Fe2+)2 WO4(OH)4•4Н2О и антуанит AIWO4 (OH)•Н2О; оба имеют слабо изученную субслоистую структуру. Для химического состава вольфраматов природных характерны изоморфные замещения WO42- на MoO42- (в шеелите может содержаться до 20% MoO3), приводящие к уменьшению плотности молибденсодержащих фаз и к перемене цвета люминесценции с голубоватого (у шеелита) на жёлтый (у молибдошеелита). Характерны также изоморфные замещения Fe2+-Mn2+-Zn2+, свойственные вольфрамиту и санмартиниту, влияющие на физические свойства минералов (плотность, прозрачность, окраску, цвет черты).

Работа содержит 1 файл

Характеристика минералов классов.doc

— 119.50 Кб (Скачать)

глубиной области осадконакопления и рельефом дна;

гидродинамическими условиями (наличием течений, влиянием волновой деятельности);

характером поставляемого осадочного материала (определяемого климатической зональностью и удалённостью от континентов);

биологической продуктивностью (морские организмы извлекают из воды минеральные вещества и поставляют их на дно после отмирания (в виде раковин, коралловых построек и пр.));

вулканизмом и гидротермальной деятельностью.

Одним из определяющих факторов является глубина, позволяющая выделять несколько зон, отличающихся особенностями осадконакопления. Литораль (от лат. «litoralis» - береговой) - пограничная полоса между сушей и морем, регулярно затопляемая во время прилива и осушаемая при отливе. Литораль представляет собой зону морского дна, расположенную между уровнями самого высокого прилива и самого низкого отлива. Неритовая зона соответствует глубинам шельфа (от греч. «erites» - морской моллюск). Батиальная зона (от греч. «глубокий») примерно соответствует области континентального склона и подножия и глубинам 200 – 2500 м. Эта зона характеризуется следующими экологическими условиями: значительное давление, почти полное отсутствие света, незначительные сезонные колебания температуры и плотности воды; в составе органического мира преобладают представители зообентоса и рыбы, растительный мир весьма беден из-за отсутствия света. Абиссальная зона (от греч. «бездонный») соответствует морским глубинам более 2500 м, что отвечает глубоководным котловинам. Воды этой зоны характеризуются относительно слабой подвижностью, постоянно низкой температурой (1-20C, в полярных областях ниже 00C), постоянной солёностью; здесь полностью отсутствует солнечный свет и достигаются огромные давления, что определяют своеобразие и бедность органического мира. Участки, глубиной более 6000 м обычно выделяют как ультраабиссальные зоны, соответствующие наиболее глубоким участкам котловин и глубоководным желобам.

 

4. Понятие о генезисе минералов

  Учение о генезисе минералов занимается процессами образования минералов. Минералы представляют из себя определенные химические соединения или изоморфные смеси таких соединений, образовавшиеся естественным путем на Земле. Это почти все твердые соединения. Каждый минерал является памятником физического или химического процесса, шедшего на Земле, иногда в весьма отдаленное от нас время. Изучив минералы какого-нибудь определенного места на земном шаре, и определив их генезис, мы можем восстановить картину химических процессов, один за другим шедших в этой местности. От этих частных проявлений химической жизни Земли мы можем подняться до более общего представления о генетических условиях различных частей земного шара, как по отношению к поверхности, так и об изменении этих условий генезис минералов в слоях различной глубины, наконец, изменение генетических явлений с течением времени. В этом заключается научный и практический интерес изучения генезиса минералов.

Зная условия генезиса минерала, его устойчивость при природных условиях (т. е. генезис других минералов, которые могут из него произойти) — можно решать, при каких условиях и в каких местностях можно ждать тех или иных руд важных металлов. Эти и тому подобные вопросы могут быть решены только при возможно широком развитии и распространении учения о генезисе минералов, которые отчасти и сложились под влиянием практических потребностей.  Все наши знания получаются здесь путем прямого наблюдения процесса образования минерала, идущего в природе у нас на глазах, и, во-вторых, путем логического вывода о том или другом возможном происхождении данного минерала. Достоверность этих обоих способов познания неодинаковая. Нужно проверять выводы, полученные вторым путем, прямым наблюдением в природе. Пример такого прямого наблюдения представляют процессы образования некоторых простых солей в природе. В целом ряде мест земного шара, преимущественно в низменностях или в котловинах, не имеющих истока, находятся большие и малые соленые и горькие озера.В Астраханской губернии, на недалеком расстоянии от Волги, лежит более тысячи таких озер, из которых иные, напр. Эльтонское или Баскунчакское, занимают обширную площадь (Эльтонское около 198км2). В этих озерах количество соли и самый состав ее различен; в одних раствор очень слаб, в других он почти насыщен при обычной температуре. В них заключаются хлористые, сернокислые и др. соли натрия, магния, калия и проч. При незначительном понижении температуры или при значительном испарении воды часть бывших в растворе веществ не может больше в нем удерживаться, и они оседают в виде твердых кристаллических масс или отдельных кристаллов, или плавают по поверхности озера. Во всех этих озерах перед нашими глазами идет генезис различных минералов, отлагаемых в десятках миллионах пудов. Мы в состоянии применить здесь самые полные, точные способы наблюдения. Этим путем образуются каменная соль (NaCl — хлористый натрий), тенардит (Na2SO4 — сернокислый натрий), глауберова соль (Na2SO4∙10Н2О), трона (Na3H[CO3]2H2O), бура (Na2B4O7∙10H2O), гипс (CaSO4∙2Н2О) и т. п. — по крайней мере десятка два-три различных минералов. Состав образуемых продуктов меняется: 1) в зависимости от тех или иных изменений в составе самого раствора и 2) от тех или иных условий самого их отложения. Например: борнокислых соединений нет в озерах Астраханской губернии, но их много в некоторых озерах Тибета или Северной Америки, а соответственно и минералы, из них образовавшиеся, являются иными, чем у них. В Неваде из таких озер оседает боронатрокальцит (двойная борнокислая соль натрия и кальция), в других случаях оседает бура, калеманит (известковая соль борной кислоты — Са2В2О11∙5Н2О) и пр. Сильно влияют на состав образуемых минералов внешние условия среды. Например, в озерах, содержащих одновременно хлористый натрий и сернокислый натрий, идет отложение сернокислой соли в виде минерала тенардита (Na2SO4), тогда как в присутствии малого количества хлористого натрия образуется мирабилит (Na2SO4∙10Н2О). Еще интереснее опыты Ван-Гоффа и Девентера, подтверждаемые прямым наблюдением в природе. Из одного и того же раствора в природных озерах, заключающего Na2SO4, MgSO4, могут образоваться различные минералы. Иногда идет образование тенардита, или глауберовой соли, и одновременно оседают магнезиальные соединения в виде кизерита (Mg SO4∙Н2О) или горькой соли (MgSO4∙7На2О). Нередко, однако, происходит образование двойной соли в виде минерала астраханита Na2Mg(SO4)2∙4H2О. Ван-Гоффу и Девентеру удалось доказать, что процесс идет в том или ином направлении в зависимости от температуры окружающего пространства. При температуре выше 21,5° Ц. происходит всегда отложение астраханита; при иной отдельно выделяются глауберова и горькая соль. Подобных случаев можно привести много. Изучая в какой-нибудь местности одни оставшиеся от когда-то бывших там озер твердые осадки — минералы, — мы по сравнению с теперь наблюдаемыми можем легко судить о генезисе этих осадков.

Другой значительный класс существенно иных соединений приходится наблюдать нам на месте их генезиса во время каждого вулканического извержения. Здесь процессы идут в расплавленных массах разнообразных силикатов или среди парообразных продуктов, выделяемых под влиянием высокой температуры из недр Земли, попав в нашу более холодную атмосферу, эти пары превращаются в твердое состояние и нередко на многие годы остаются памятником бывшего извержения. После каждого извержения стенки кратеров и местность на значительное от них расстояние покрывается налетами разных солей — хлористого натрия нашатыря, серы и пр. Нередко мы можем проследить и химические реакции между этими парами; так, почти каждое извержение всех вулканов сопровождается выделением паров летучего около 400° соединения хлорного железа — Fe2Cl6, — одновременно выделяются огромные количества паров воды. Пары хлорного железа и воды быстро соединяются и дают очень устойчивое, нелетучее при самых высоких доступных нам температурах, соединение, так называемый железный блеск, окись железа — Fe2О3. Она оседает тут же в виде блестящих пластинчатых кристаллов темно-серого цвета с сильным металлическим блеском. Эти кристаллы проникают во все трещины, покрывают стенки кратера и более холодные части лавы и остаются памятниками извержения и выделения хлорного железа на долгое время. Форма кристаллов железного блеска, происшедшего этим путем, отличает их очень ясно от железного блеска, произошедшего иными путями. В то же самое время в расплавленной лаве идут свои химические процессы во время ее застывания, выделяется целый ряд характерных соединений — минералов, как оливин (Mg,Fe)2SiO4, авгит (см.), полевые шпаты и т. п. Состав выделяемых минералов меняется в зависимости от состава лавы и от изменения внешних условий еще в большей степени, чем то, что мы видели в озерах. При одном и том же составе могут образоваться разные минералы в зависимости от различных внешних условий.

Наконец, третий случай прямого наблюдения генезиса минералов представляет образование их деятельностью организмов. Кораллы отлагают целые острова, состоящие из кальцита — углекислой извести; с ними вместе ту же роль играют некоторые водоросли, в горячих источниках выделяется сера, как продукт жизни серных бактерий. В озерах умеренного пояса, в местах выхода железных ключей, в болотах идет непрерывно образование железной руды. Растворы двууглекислого железа, образовавшиеся при иных условиях, попадая на земную поверхность, разлагаются деятельностью низших животных и, может быть, особой бактерии. Они дают начало отложениям дерновой, бобовой и др. руд железа, состоящих главным образом из гидрата окиси железа — 2Fe2О3∙3H2O. В почвах деятельностью особого грибка идет постоянно образование селитры, что может быть прослежено на месте. Таким образом, путем прямого научного наблюдения генезиса минералов, идущего у нас на глазах, мы можем собрать значительное число фактов для разъяснения этого генезиса в тех случаях, когда проследить процесс своими глазами мы не можем. Всегда можно отличить минералы между собой, происходящие от неодинаковых процессов. Сравнение дает нам признаки их одинакового или различного генезиса. Этим путем мы знаем, что многочисленные железные руды Средней Германии произошли тем же путем, как и те, какие теперь образуются в болотах и озерах; что значительная часть минералов Центральной Франции или многих других местностей обязана своим происхождением когда-то бывшим там вулканам, от которых нередко остались едва заметные следы. В очень многих случаях, однако, когда такое сравнение дает неясные указания, мы должны идти другим путем, пользуясь рядом наблюдений над теми или иными явлениями минерального царства. Во-первых, нам важно знать залегание минералов. Иногда минерал лежит толстым слоем, в виде гнезда, или штока, иной раз находится в виде кристаллов, заполняющих пустоты в породе, тонким налетом покрывает трещины или стенки породы или же находится в могучих трещинах горных пород, в так называемых жилах. Все это различные случаи образования минералов: в жилах он не образуется из расплавленного состояния; в трещину породы нередко должен проникнуть в парах; очень ясно можно убедиться в выделении его из раствора, например, в пустотах породы, куда иначе он проникнуть не мог. Еще важнее бывает знать происхождение самой породы. Например, фосфориты нередко встречаются в осадочных породах, где кости погребенных в этих слоях животных превратились в фосфорит. Здесь ясно их происхождение — медленным путем выделения из раствора, — причем материалом им послужили содержащие фосфор вещества исчезнувших организмов. Не менее важны явления парагенезиса. Парагенезисом называется нахождение в природе определенных различных минералов вместе в одном куске или месторождении. Очевидно, это указывает на существование известной зависимости их друг от друга. Так, всюду и везде на поверхностных частях различных никелевых и кобальтовых соединений мышьяка, например купферникеля (NiAs — одномышьяковистый никель), шпейсового кобальта [Со(As,S)2] и проч., мы находим зеленые никелевые цветы (NiAsO4∙6H2O) или розовые кобальтовые цветы (CoAsO4∙6Н2О). Очевидно, это продукты окисления никелевых и кобальтовых соединений. При изучении парагенезиса мы в состоянии различить минералы, раньше или позже образовавшиеся, так как последние всегда находятся на ранее образованных продуктах. Это различают, говоря о первой, второй, третьей генерации минералов какой-нибудь местности. Каждая генерация указывает на особый химический процесс. Явления парагенезиса определяют, главным образом, такую последовательность минералов или указывают на постоянное совместное нахождение в природе различных минералов, что заставляет исключать из числа возможных реакций те, которые не дадут этого объяснения. Так, самородный висмут встречается в жилах вместе с кобальтовыми и никелевыми сернистыми и мышьяковистыми соединениями, а оловянный камень (SnO2), находящийся также в жилах, никогда не встречается вместе с никелевыми или кобальтовыми соединениями — его сопровождают кварц (SiO2), соединения вольфрама (напр. шеелит CaWO4), богатые фтором (напр. плавиковый шпат CaF2, топаз Al2Si(О,F2)5 и пр.] и т. п. Очевидно, условия образования висмута и оловянного камня существенно иные. Парагенезис больше ставит вопросы, — решать приходится другими приемами.

Все происходящие на Земле реакции могут быть сведены в немногие группы. Минералы образуются на Земле следующими способами.

1) Выделением из растворов. Огромное большинство минералов образовалось этим путем. Мы видели пример такого образования в рассмотренном раньше случае солей. В природе действует не чистая вода, а вода, насыщенная углекислотой. Нередко растворы находятся при высокой температуре или же богаты угольной кислотой и находятся под давлением. Этим путем выделяются из растворов многочисленные кремнеземистые соединения. Из горячих источников (гейзеров) оседает свободная кремнекислота (так называемый гейзерит и пр.), нерастворимая при обыкновенных условиях, углекислая закись железа выделяется в виде сидерита, представляющего из себя одну из богатейших и важнейших руд на железо. Нередко кристаллизация происходит в глубинах Земли под давлением, иногда идет в присутствии различных солей, позволяющих переводить в раствор при обычных условиях нерастворимые соединения; так, в присутствии в воде сернистых щелочей переходят в раствор и из него выделяются киноварь (HgS), золото и пр. (горячие источники в Калифорнии). В природе вообще могучим деятелем является время: слаборастворимые вещества в течение тысячелетий могут оставить заметные следы своей растворимости (ср. Метаморфизм).

2) Не столь часты, но весьма характерны разнообразные молекулярные перемещения, происходящие в минералах, когда один минерал получается из другого путем молекулярной перегруппировки в твердом состоянии. Так, нередки кристаллы рутила (TiO2), образовавшиеся из анатаза или брукита — полиморфных разновидностей той же TiO2. Под давлением эти реакции идут очень часто.

3) Самым важным случаем генезиса являются, однако, химические реакции. Мы можем различать несколько классов химических реакций, идущих в природе: а) реакции присоединения, когда одно соединение образуется из другого путем присоединения ко второму некоторых элементов; таково образование куприта (Cu2O) из самородной меди под влиянием воздуха, также англезита (PbSO4) из свинцового блеска (PbS) и пр. б) Реакции двойных разложений — наиболее чистая и обычная форма Г. минералов. Здесь два тела, входя в реакцию, меняют свои составные части. Примером подобного происхождения может служить волластонит (CaSiO2), образующийся из СаСО3 — под влиянием действия кремнеземистых солей и т. п. в) Реакции распадения — когда соединение распадается на свои составные части и эти части являются нам в виде самостоятельных минералов. В природе это нередкая форма образования для некоторых сложных соединений, которые являются неустойчивыми при изменившихся внешних условиях из среды; так, например, блеклые руды распадаются на составные части и дают начало сурьмяному блеску (Sb2S3), аурипигменту (As2S3), медному блеску (Cu2S) и пр. г) Наконец, реакции восстановления и целый ряд процессов диссоциации (см.).

Этими тремя путями объясняется Г. большинства минералов; редко приходится допускать иные процессы, как электролиз (для некоторых самородных элементов) или малоизученные изменения в твердой среде.

 

 

Геохронологическая шкала

Эра (эратема, граппа)

Период (система)

Эпоха (отдел)

Инд

екс

Цвет на геологической карте

Средняя продолжительность млн. лет

период

возраст

Кайнозойская (кайнозой) KZ (Kz)

четвертичный Q

современная поздняя(верхний) средняя(средний) ранняя (нижний)

Q

Q

Q

Q

Светло-серый

0,7

 

63+3

 

 

 

65+3

 

 

 

 

67+3

 

165+10

 

 

 

 

2304+10

 

 

 

 

 

 

 

 

 

 

 

330+10

 

 

 

 

 

 

 

570+10

2100+100

2700+100

 

 

1800

4600+200

неогеновый (неоген)N

плиоцен(верхний) миоцен (нижний)

 

Лимонно-желтый

25

палеогеновый (палеоген) Р

олигоцен(верхний)

эоцен(средний) палеоцен(нижний)

P1

P1 P1

Желтый

41

Мезозойская (мезозой) MZ (Mz)

меловой (мел) К(Сг)

поздняя(верхний) ранняя (нижний)

К2 K1

Светло-зеленый

70

юрский (юрс)

J

поздняя(верхний)

средняя (средний)

ранняя (нижний)

J3 J2 J1

Синий

55-58

триасовый (триас) Т

поздняя (верхний)

средняя(средний)

ранняя (нижний)

ТЗ Т2 Tl

Светло-фиалетовый

40-45

Палеозойская (палеозой) PZ (Pz)

пермский (пермь) Р

поздняя (верхний) ранняя (нижний)

Р2

Р2

Оранжевый

45

каменноуголь

ный (карбов)

С

поздняя(верхний)

средняя(средний)

ранняя(ранний

С2

С2 С1

Серый

65-70

девонский

(девон) D

поздняя(верхний) средняя(средний) ранняя (ранний)

D3 D2 D1

Коричневый

55-60

силурский (силур) S

поздняя(верхний) ранняя (ранний)

S2

S1

Коричневато- зеленый

35

ордовикский

(ордовик) О

поздняя(верхний)

средняя(средний)

ранняя(ранний

O3

O2

O1

Фисташ-ковозеленый

60-70

кембрийский (кембрий) 

(Cm)

поздняя(верхний)

средняя(средний)

ранняя(ранний

3

2

1

Синевато-зеленый

70-80

Протерозойская (протерозой) PR (Pt)

 

поздняя (верхний)

средняя(средний)

ранняя (нижний)

PR3 PR2 PRl

Желтовато-розовый

 

Архейская (архей) AR (A)

Архейкая группа не имеет общепринятых подразделений. Подразделения имеют местное значение.

 

Розовый

 

Информация о работе Характеристика минералов