Автор: Пользователь скрыл имя, 20 Марта 2012 в 07:07, реферат
Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы — это порода с вкраплениями чистой серы.
Пока нет однозначного ответа на вопрос о том, образовались ли эти вкрапления одновременно с сопутствующими породами или позже. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.
1. Происхождение серы. Получение серы…………...……………………………2
2. История открытия элемента……………………………………………………..5
3. Основные свойства серы………………………………….………..……………6
3.1. Общие сведения…………………………………………………..…………6
3.2. Физические и химические свойства серы………………………………….8
4. Основные сферы применения серы……………………………………………14
5. Список литературы……………………………………………………………...12
Главные месторождения самородной серы расположены в США, СНГ, Мексике, Италии, Японии.
3.1. Физические и химические свойства серы.
Сера химически активна и особенно легко при нагревании соединяется почти со всеми элементами, за исключением N2, I2, Au, Pt и инертных газов.
В природных условиях сера существует в виде циклооктасеры S8 , ее кристаллы содержат молекулы в виде короны. Наиболее изучены три модификации серы, из которых самой устойчивой является α-модификация или ромбическая сера:
Она известна своей ярко желтой окраской (ρ = 2,07 г/см3, Тпл = 112,8 °C Ткип = 444,6 °C).Природная сера практически полностью состоит из α-модификации. Эта модификация практически нерастворима в воде, но хорошо растворима в сероуглероде CS2 50,4 г/100г, бензоле C6H6 2,1 г/100г, толуоле 2,06 г/100г и ацетоне 2,5 г/100г (при 25°C), причем растворимость с повышением температуры увеличивается. При температуре 95,6°C ромбическая сера переходит в моноклинную β-модификацию, устойчивую между 95,6 °C и температурой плавления Тпл = 119,3 °C. Она имеет медово – желтую окраску ρ = 1,96 г/см3. Обе эти формы образованы восьмичленными циклическими молекулами S8 с энергией связи S - S 225,7 кДж/моль.
При плавлении сера превращается в подвижную жёлтую жидкость, которая выше 160 °C буреет, а около 190 °C становится вязкой тёмно-коричневой массой. Выше 190°C вязкость уменьшается, а при 300 °C сера вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 °C кольца S8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 °C уменьшает среднюю длину таких цепей.
Если расплавленную серу, нагретую до 250-300 °C, влить тонкой струей в холодную воду, то получается коричнево-жёлтая упругая масса (пластическая сера). Она лишь частично растворяется в сероуглероде, в осадке остаётся рыхлый порошок. Растворимая в CS2 модификация называется γ-S, а нерастворимая μ-S. При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую α-S. В парах при температуре кипения, кроме молекул S8, существуют также S6, S4 и S2. При дальнейшем нагревании крупные молекулы распадаются, и при 900°C остаются лишь S2, которые приблизительно при 1500°C заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров серы получается устойчивая ниже - 80°C пурпурная модификация, образованная молекулами S2.
Парообразная сера реагирует с углеродом при температуре 800-900 °C, превращаясь в сероуглерод, а при сплавлении с фосфором образует нестехиометрические сульфиды состава PnSx, где х=3-7.
При нагревании сера, взаимодействует с металлами, образует соответствующие сернистые соединения (сульфиды) и многосернистые металлы (полисульфиды). Соединения серы с азотом (N4S4 и N2S5) могут быть получены только косвенным путём.
С концентрированными растворами серной и азотной кислот сера реагирует только при нагревании:
2H2SO4 + S = 3SO2 + 2H2O
6HNO3 + S = H2SO4 + 2H2O + 6NO2
Тонкоизмельченная сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углем, жирами, маслами, а так же хлорной известью. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами.
Из водородных соединений серы наибольшее значение имеет сероводород (моносульфан) H2S. Это бесцветный ядовитый газ с запахом тухлых яиц. В воде он малорастворим. Растворение физичекое. В незначительной степени в водном растворе происходит протолиз молекул сероводорода и в еще меньшей степени – образующихся при этом гидросульфид-ионов. Тем не менее, раствор сероводорода в воде называют сероводородной кислотой (или сероводородной водой). На воздухе сероводород сгорает:
2H2S + 3O2 = 2H2O + SO2 (при избытке кислорода).
Кроме сероводорода, сера образует и другие сульфаны H2Sn, например, дисульфан H2S2, аналогичный по строению пероксиду водорода. Это тоже очень слабая кислота; ее солью является пирит FeS2.
В соответствии с валентными возможностями своих атомов сера образует два оксида: SO2 и SO3. Диоксид серы (тривиальное название – сернистый газ) – бесцветный газ с резким запахом, вызывающим кашель. Триоксид серы (старое название – серный ангидрид) – твердое крайне гигроскопичное немолекулярное вещество, при нагревании переходящее в молекулярное. Оба оксида кислотные. При реакции с водой образуют соответственно сернистую и серную кислоты.
В разбавленных растворах серная кислота – типичная сильная кислота со всеми характерными для них свойствами. Чистая серная кислота, а также ее концентрированные растворы – очень сильные окислители, причем атомами-окислителями здесь являются не атомы водорода, а атомы серы, переходящие из степени окисления +VI в степень окисления +IV. В результате при ОВР с концентрированной серной кислотой обычно образуется диоксид серы, например:
Cu + 2H2SO4 = CuSO4 + SO2 + 2H2O;
2KBr + 3H2SO4 = 2KHSO4 + Br2 + SO2 + 2H2O.
Таким образом, с концентрированной серной кислотой реагируют даже металлы, стоящие в ряду напряжений правее водорода (Cu, Ag, Hg). Вместе с тем с концентрированной серной кислотой не реагируют некоторые довольно активные металлы (Fe, Cr, Al и др.), это связано с тем, что на поверхности таких металлов под действием серной кислоты образуется плотная защитная пленка, препятствующая дальнейшему окислению. Это явление называется пассивацией.
Будучи двухосновной кислотой, серная кислота образует два ряда солей: средние и кислые. Кислые соли выделены только для щелочных элементов и аммония, существование других кислых солей вызывает сомнение.
Большинство средних сульфатов растворимо в воде и, так как сульфат-ион практически не является анионным основанием, не подвергаются гидролизу по аниону.
Качественной реакцией на сульфат-ион является осаждение исследуемым раствором сульфата бария из подкисленного соляной кислотой раствора хлорида бария.
4. Основные сферы применения серы.
Сера и ее соединения являются необходимым компонентом при производстве 88 из 150 важнейших химических продуктов. Около 50% производимой серы используется для производства H2SO4, около 25%-для получения сульфитов, 10-15%-для борьбы с вредителями сельско-хозяйственных культур, 10%-в резиновой промышленности (как вулканизующий агент). Также ее применяют в производстве красителей, искусственных волокон, люминофоров, сульфидов. Сера входит в состав головок спичек, мазей для лечения кожных заболеваний. Небольшие добавки серы улучшают обрабатываемость автоматных сталей и антифрикционные свойства спеченных антифрикционных материалов.
В 70-е годы прошлого века производство серы превысило потребности в ней, поэтому стали искать новые возможности применения, особенно в строительстве. Так появился серный пенопласт – уникальный теплоизоляционный материал; бетонные смеси нового поколения; а так же покрытия для автострад, содержащие элементарную серу.
Соединения серы по отрицательному воздействию на окружающую среду занимают одно из первых мест среди загрязняющих веществ. Основной источник загрязнения соединениями серы - сжигание угля и нефтепродуктов. 96% серы поступает в атмосферу в виде SO2, остальное количество приходится на сульфаты, H2S, CS2, COS и др. В виде пыли элементная сера раздражает органы дыхания, слизистые оболочки, может вызывать экземы и др. Предельно допустимая концентрация воздухе 0,07 мг/м3 (аэрозоль, класс опасности 4).
В сельском хозяйстве сера применяется как в элементарном виде, так и в виде соединений. Установлено, что потребность растений в этом элементе немногим меньше фосфора. Серные удобрения влияют не только на количество, но и качество урожая. Опытами доказано, что серные удобрения влияют на морозостойкость злаков. Они способствуют образованию органических веществ, содержащих сульфогидрильные группы-S-Н. Это приводит к изменению внутренней структуры белков, их гидрофильности, что повышает морозостойкость растений в целом. Применяют серу в сельском хозяйстве и для борьбы с болезнями растений, главным образом винограда и хлопчатника.
В медицине используется как элементарная сера, так и ее соединения. Например, мелкодисперсная сера—основа мазей, необходимых для лечения различных грибковых заболеваний кожи.
5. Список литературы.
1. Курс общей химии / под ред. Н.В.Коровина. – М.: Высшая школа, 1981.
2. Фролов В.В. Химия. – М.: Высшая школа, 1979.
3. Харин А.Н., Катаева Н.А., Харина Л.Т. Курс химии. – М.: Высшая школа, 1983.
4. Глинка Н.А. Общая химия. – М.: Химия, 1983.
5. Сауков А.А. Геохимия.-М.: Наука, 1975.