Ветроэнергетика

Автор: Пользователь скрыл имя, 27 Февраля 2013 в 22:51, реферат

Описание работы

Ветроэнергетика – отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.

Работа содержит 1 файл

Ветроэнергетика_.doc

— 103.50 Кб (Скачать)

Другие экономические  проблемы

Ветроэнергетика является нерегулируемым источником энергии. Выработка  ветроэлектростанции зависит от силы ветра - фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезах. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Проблемы в сетях  и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.

Небольшие единичные  ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередачи и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими.

Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

Крупные ветроустановки испытывают значительные проблемы с  ремонтом, поскольку замена крупной  детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.

Экономика малой ветроэнергетики

В России считается, что  применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:

  • Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель))
  • Высокой стоимости аккумуляторных батарей - около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
  • Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

В настоящее время, несмотря на рост цен на энергоносители, себестоимость  электроэнергии не составляет сколько-нибудь значительной величины у основной массы  производств по сравнению с другими  затратами; ключевыми для потребителя  остаются надёжность и стабильность электроснабжения.

Основными факторами, приводящими  к удорожанию энергии, получаемой от ветрогенераторов, являются:

  • Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
  • Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
  • Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

В настоящее время  наиболее экономически целесообразно  получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

  • Отопление является основным энергопотребителем любого дома в России.
  • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
  • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
  • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
  • Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.

Экологические аспекты  ветроэнергетики

Выбросы в  атмосферу

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы  в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота.

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика  позволит сократить ежегодные выбросы  СО2 на 1,5 миллиарда тонн.

Влияние на климат

Ветрогенераторы изымают  часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее.

Вентиляция  городов

В современных городах  выделяется большое количество вредных  веществ, в том числе от промышленных предприятий и автомобилей. Естественная вентиляция городов происходит с  помощью ветра. При этом описанное выше снижение скорости ветра из-за массового использования ВЭУ может снижать и вентилируемость городов. Особенно неприятные последствия это может вызвать в крупных мегаполисах: смог, повышение концентрации вредных веществ в воздухе и, как следствие, повышенная заболеваемость населения. В связи с этим установка ветряков вблизи крупных городов нежелательна.

Шум

Ветряные энергетические установки производят две разновидности  шума:

  • механический шум - шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
  • аэродинамический шум - шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

В настоящее время  при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений  уровня шума не даёт информации о шумности ветроустановки, так как эффективное  отделение шума ветроустановки от шума ветра в данный момент невозможно.

 

Источник шума

Уровень шума, дБ

Болевой порог человеческого слуха

120

Шум турбин реактивного двигателя  на удалении 250 м

105

Шум от отбойного молотка в 7 м

95

Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м

65

Шумовой фон в офисе

60

Шум от легковой автомашины при скорости 64 км/ч

55

Шум от ветрогенератора в 350 м

35—45

Шумовой фон ночью в деревне

20—40


 

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ. Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Низкочастотные  вибрации

Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса. Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности  воздуха возможно образование ледяных  наростов на лопастях. При пуске  ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.

Кроме того, в случае легкого  обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

Визуальное  воздействие

Визуальное воздействие  ветрогенераторов — субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном  датской фирмой AKF, стоимость воздействия  шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью, что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

Популяции летучих мышей, живущие рядом с ВЭС на порядок  более уязвимы, нежели популяции  птиц. Возле концов лопастей ветрогенератора  образуется область пониженного  давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков.

Использование водных ресурсов

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет  существенно снизить нагрузку на водные ресурсы.




Информация о работе Ветроэнергетика