Автор: Пользователь скрыл имя, 05 Января 2012 в 12:19, контрольная работа
Задание 1. Решить транспортную задачу.
Задание 2. Определить продуктивность матрицы А.
Задание 3. Дана матрица
Как показывает таблица 2, новое базисное решение x00=(0,10,30,20,40,0) не оптимально (в нулевой строке есть неотрицательная оценка 7). Поэтому с ведущим элементом 1 (см. таблицу 2 ) строим новую симплекс-таблицу, т.е. строим новое допустимое базисное решение
Таблице 3 соответствует допустимое базисное решение x000=(10,0,30,10,50,0) и оно оптимально, т.к. в нулевой строчке нет положительных оценок. Поэтому f(x000)=390 есть минимальное значение целевой функции.
Ответ: x000=(10, 0, 30, 10, 50, 0)
- точка минимума, f(x000)=390
.
Задание 7. Составить матрицу Леонтьева, определить её продуктивность.
Пусть новый вектор валового выпуска равен: . Найти новый вектор конечного продукта.
|
Задание 8. Определить запас продуктивности матрицы А с помощью ПК
|
Ответ – матрица
А продуктивна, запас ее продуктивности λ = 0,985.
Задание 9. Платёжная матрица игры задана в виде:
Упростить игру (упростить платёжную матрицу) и найти оптимальное решение.
Упростим игру (упростим платёжную матрицу).
1-я
и 4-я строки равны. Поэтому
отбросим 4-ю строку. Вероятность
p4 = 0. Получим матрицу:
2-я
строка доминирует над 3-й
2-й
столбец доминирует над 3-м
столбцом (9 = 9, 5 < 8). Поэтому отбросим
3-й столбец. Вероятность q3
= 0. Получим матрицу:
Строки
между собой не сравнимы (8 > 6, 4 <
7), столбцы тоже (8 < 9, 6 > 5; 8 > 4, 6 <
7; 9 > 4, 5 < 7). Дальнейшее упрощение
невозможно. Мы свели игру 4×4 к игре
2×3.
Задание
10. Продукцию, производимую на предприятиях
A и B, надо развести по магазинам №1, №2
и №3. Предприятие A производит 320 единиц
продукции, предприятие B – 380 единиц. Магазин
№1 реализует за сутки 200 единиц продукции,
магазин №2 --280 единиц, магазин №3 --220 единиц.
Составьте план перевозок продукции, при
котором их стоимость будет минимальной,
если стоимость перевозки единицы продукции
задается таблицей:
Предприятие | Магазин №1 | Магазин №2 | Магазин №3 |
A | 2+к | 4 | 6 |
B | 4 | 5 | 3+к |
Решение.
Задача 10 | ||||
Предприятия | Маг 1 | Маг 2 | Маг 3 | |
200 | 280 | 220 | ||
А | 320 | 4 | 4 | 6 |
Б | 380 | 4 | 5 | 5 |
Предприятия | Маг 1 | Маг 2 | Маг 3 | |
200 | 280 | 220 | ||
А | 320 | 40 | 280 | 0 |
Б | 380 | 160 | 0 | 220 |
Минимальные затраты на перевозку - | 3020 |
В результате получили
оптимальный план грузоперевозок и
стоимость минимальных затрат на
них, равную 3020.
Информация о работе Контрольная работа по "Математическое Моделирование"