Автор: Пользователь скрыл имя, 30 Ноября 2011 в 12:18, задача
Даны данные по выручке розничного магазина помесячно в руб. Необходимо подобрать адекватную модель, построить прогноз на апрель-август 1997 года. Можно ли сказать, что в какой то момент модель меняет структуру?
Задание
Даны данные по выручке розничного магазина помесячно в руб. Необходимо подобрать адекватную модель, построить прогноз на апрель-август 1997 года. Можно ли сказать, что в какой то момент модель меняет структуру?
Данные
мар.93 | 20707,70 | апр.95 | 110556,70 |
апр.93 | 14182,50 | май.95 | 118392,50 |
май.93 | 22830,40 | июн.95 | 212425,30 |
июн.93 | 50047,90 | июл.95 | 155620,50 |
июл.93 | 82462,00 | авг.95 | 107128,90 |
авг.93 | 41831,60 | сен.95 | 50067,70 |
сен.93 | 22732,30 | окт.95 | 49965,70 |
окт.93 | 22911,60 | ноя.95 | 65967,50 |
ноя.93 | 53940,60 | дек.95 | 160288,60 |
дек.93 | 65044,00 | янв.96 | 81290,50 |
янв.94 | 75633,70 | фев.96 | 107471,60 |
фев.94 | 66722,70 | мар.96 | 107046,70 |
мар.94 | 60160,30 | апр.96 | 139299,10 |
апр.94 | 57293,40 | май.96 | 215974,90 |
май.94 | 99203,20 | июн.96 | 256839,00 |
июн.94 | 112140,10 | июл.96 | 196778,60 |
июл.94 | 138873,20 | авг.96 | 135720,20 |
авг.94 | 55370,40 | сен.96 | 81324,80 |
сен.94 | 36404,50 | окт.96 | 67984,50 |
окт.94 | 26864,50 | ноя.96 | 132843,30 |
ноя.94 | 38483,60 | дек.96 | 193449,50 |
дек.94 | 127923,90 | янв.97 | 234151,60 |
янв.95 | 127522,70 | фев.97 | 166707,80 |
фев.95 | 65857,40 | мар.97 | 137552,90 |
мар.95 | 74970,60 |
Предварительный
анализ данных
Как видно из графика, временной ряд выручки имеет тренд, хоть и не ярко выраженный. Так же наблюдается сезонность.
Как видно из рисунка, временной ряд не имеет нормальное распределение,
Диапозон изменения временного ряда составляет 242656,5 рублей. Остальные описательные статистики приведены на рисунке.
Таким образом, на основе анализа данных можно составить следующий план действий для построения модели:
То есть предполагаемы вид модели на взгляд исследователя будет иметь следующий вид:
Y=(T+Y^)*S, где
Y – величина выручки от продаж,
T – тренд
Y^ - модель остатков временного ряда
S – сезонность (автор предполагает использование мультипликативного метода выделения сезонности)
Выделение сезонности
Как уже говорилось выше, для выявления сезонности, мы использовал мультипликативный метод.
В результате использования возможностей программного обеспечения Eview 4. мы получили следующие результаты:
Как видно из рисунка наибольший объем продаж наблюдается в июле месяце. Так же можно выделить два периода повышенного объема продаж:
Таким образом, после выделения сезонности наш ряд приобрел следующий вид:
Как видно из рисунка, временной ряд имеет теперь уже ярко выраженный тренд, избавление от которого является следующим нашим шагом.
Избавление от тренда
Как уже говорилось выше, ряд имеет ярко выраженный тренд. При чем из рисунка видно, что скорее всего ряд имеет линейный тренд.
И действительно, с помощью средств Eviews 4, мы выявили наличие следующего вида тренда:
Как видно данная модель тренда качественна, так как коэффициент детерминации и скорректированный коэффициент детерминации достаточно велики (более 0,85), а F-statistic показывает, что коэффициенты при экзогенных переменных отличны от нуля.
Таким образом, уравнение тренда имеет вид:
SALESA = 2947.413711*T + 22048.73885
И временной ряд окончательно приобретает вид:
Анализ остатков
Для анализа остатков временного ряда (избавленного от тренда и сезонности):
Из рисунка видно, что практически все значения выборочных автокорреляционной и частной автокорреляционной функций находятся внутри доверительного интервала, то есть на 5% уровне можно говорить о незначительном отличии от нуля
Для проверки ряда на стационарность используем тест Дики-Фуллера. В данной ситуации мы решили протестировать сам временной ряд без включения в тестируемое уравнение тренда и свободного члена и количеством запаздывающих лагов -5.
В результате получили следующее: - нулевая гипотеза о наличии единичного корня отвергается, так как значение ADF-statistic больше критического значения на 10% уровне значимости (см. рис)
Таким образом, наш ряд является стационарным. И на его основе можно построить ARMA модели.
Построение ARMA модели
Для выбора наиболее подходящей модели нами были построены различные смешанные модели авторегрессии и скользящего среднего порядка: ARMA(1,1), ARMA(2,2) ARMA(3,3).
В результате выявили, что наиболее качественной моделью является модель ARMA(3,3):
Таким образом, мы получили адекватную модель, на основе которой можно будет построить модель.
(1) ,
где – белый шум с дисперсией . Предполагается, что для (1) выполнено условие обратимости и проведена оценка модели.
Прогнозирование
Прогнозирование осуществлялось с помощью стандартных средств Eviews 4.
Рис. Прогноз для тренда
Рис Прогноз для ARMA модели
Таким образом, в результате временной ряд без учета сезонности имеет следующий вид:
А график прогноза с учетом сезонности
Что соответствует реальным данным:
Таким образом прогноз на период апрель – август 1997 имеет следующий вид:
Месяц | Прогноз |
апр.97 | 147073,8 |
май.97 | 146122 |
июн.97 | 180265,8 |
июл.97 | 258047,1 |
авг.97 | 341179,1 |