Автор: Пользователь скрыл имя, 23 Декабря 2010 в 20:35, реферат
Активное использование экологически чистых источников энергии сейчас своего рода признак хорошего тона, всячески приветствуется как мировой общественностью, так и правительствами развитых стран.
Из таких энергоресурсов наиболее распространенным и доступным является ветер. Эксплуатация ветроустановок не требует топлива и воды, они могут быть полностью автоматизированы, отчуждаемая территория минимальна и по расчетам составляет 3 – 5 м²/кВт установленной мощности. Эти установки практически полной заводской готовности, и для их монтажа требуется минимум времени (фундамент и подключение к сети). Вот почему ветроэнергетика бурно развивается.
Специалисты подсчитали, что в течение первого десятилетия XXI в. энергия ветра может обеспечить 10% потребности Западной Европы в электроэнергии. Используя большие неосвоенные запасы энергии ветра на морском побережье, европейские страны могут увеличить мощность ветроэнергетических установок до 40 тыс. МВт в 2010 г. и до 100 тыс. МВт в 2020 г. Если учесть, что суммарная мощность ВЭУ в Европе в 2000 г. составляла примерно 8 тыс. МВт, то приведенные цифры свидетельствуют о беспрецедентных темпах развития этого сектора энергетики.
Повышение единичных мощностей и совершенствование технологии улучшают экологические показатели производства энергии на ВЭУ. Стоимость 1 кВТ·ч электроэнергии, вырабатываемой на ВЭУ в 1980 г. составляла 0,45 – 0,60 немецких марок, а в 1995 г. снизилось до 0,11 – 0,25 немецких марки. По оценкам специалистов, в перспективе себестоимость электроэнергии на ВЭУ будет существенно снижаться.
Ведущее
место в мире по производству электроэнергии
на ветроэлектростанциях (ВЭС) занимает
Германия. Причиной успешного развития
ветроэнергетики послужили
По данным на последний год XX в., установленная мощность ветроэлектростанций в Европе составила:
- в Германии – 4 443 МВт
- в Дании – 1 761 МВт
- в Испании – 1 225 МВт
- в Великобритании - 353 МВт.
Новым толчком к развитию ветроэнергетики, как уже отмечалось, явилось подписание Киотского протокола, по которому все западноевропейские страны должны снизить выбросы СО2 в атмосферу. С 1 апреля 2000 г в Германии вступил в действие утвержденный бундестагом новый закон, направленный на развитие возобновляемых источников энергии. В частности, новый закон определяет дифференцированные тарифы на электроэнергию, производимую ветроэнергетическими установками. За такую электроэнергию в течение 5 лет, начиная с даты приемки ВЭУ в эксплуатацию должна выплачиваться компенсация. Если ВЭУ будет установлена в море, то период компенсации увеличивается до 9 лет.
Опираясь на благоприятные экономические условия и на успехи машиностроителей, ветроэнергетика в ФРГ в последние годы развивается бурными темпами. Крупные ВЭУ мощностью 1 МВт и выше выпускают фирмы Vestas, GET и Tacke. Первая из них уже освоила выпуск ВЭУ на 1,5 МВт. а в стадии монтажа в 2000 г. находились 2 генератора: четырехполюсный асинхронный и асинхронный с возможностью регулирования скольжения на 10%. Фирма GET выпускает ВЭУ мощностью по 1,2 МВт с двухлопастной турбиной диаметром 61 м.
Пятнадцать таких установок входят в состав комплекса Wismar. Следующая разработка – трехлопастная турбина мощностью 1,5 МВт для комплекса на земле Маклебург, Передняя Полирания.
Фирма Tacke имеет в своем активе ВЭУ мощностью 1,5 МВт с высотой опоры 112,5 м. Демонстрационные испытания установки подтвердили несомненные ее преимущества перед серийными ВЭУ мощностью 600 кВт.
Если оценивать успехи ветроэнергетики по максимальной мощности отдельных агрегатов, то бесспорным лидером являются США. В 1999 г. на ВЭС Big Spring в штате Texas были сданы в эксплуатацию 4 ВЭУ единичной мощностью по 1650 кВт. Отметка верхней точки установки достигает 113 м, что выше статуи Свободы. Основные рабочие характеристики этих ВЭУ впечатляют: диаметр ротора ветроколеса – 66 м, площадь размаха ротора – 3 420 м². ВЭУ рассчитана на следующие параметры: начальная скорость ветра – 4 м/с, оптимальная - 17,7 м/с, максимальная – 25 м/с. Чтобы избежать энергетических потерь, связанных с возможным взаимодействием и влиянием работы отдельных ВЭУ друг от друга, расстояние между ними принято равным 3,5 диаметра ротора в направлении ветра и 10 диаметрам ротора между рядами ВЭУ в группе.
Несколько ранее на этой же ВЭС были введены в эксплуатацию 46 ВЭУ мощностью по 600 кВт каждая. С учетом новых вводов полная мощность Big Spring составила 34 МВт. Проектный годовой объем производства электроэнергии на этой электростанции составляет 117 млн. кВт·ч. Полная стоимость сооружения ВЭС Big Spring оценивается в 40 млн. долларов США, т.е. более 1 170 долларов/кВт установленной мощности. Себестоимость электроэнергии, вырабатываемой на ВЭС Big Spring, оказалась значительно ниже, чем на ранее построенных электростанциях, но все же заметно выше той цены, которую планировала получить компания Enron Wind Power Corp. (входящая в недавно обанкротившийся холдинг Enron Corp.).
Необходимо отметить, что в США, как и в Европе, за последние 15 лет себестоимость электроэнергии, вырабатываемой на ВЭС, удалось снизить в несколько раз. Объясняется это, прежде всего, внедрением новых технологий. Так, лопасти ветроколес, изготовляемые в настоящее время из стеклопластика или древесины, пропитанной эпоксидной смолой, удалось увеличить до 40 м и даже более, как в случае с Big Spring (в 80-е гг. рекордными считались лопасти в 13 м). Это позволило в последние годы строить более мощные ветроустановки, а значит – увеличивать выработку электроэнергии. Если в начале 80-х гг. средняя единичная мощность ВЭУ составляла 50 кВт, то к концу 90-х гг. она возросла до 500 – 750 кВт. За счет увеличения мощности себестоимость электроэнергии снизилась в 3 раза. Другие новшества, определившие повышение экономичности, - переменная частота вращения ветроколес, а также системы управления ВЭУ, реагирующие на изменение скорости ветра (ветроустановка Zond Z мощностью 750 кВт).
Значительных успехов в области ветроэнергетики добилась Дания. Этому способствовали как благоприятные географические условия, так и тарифная политика правительства страны. Подсчитано, что в Дании при среднегодовой скорости ветра чуть более 5 м/с удельная годовая производительность ВЭУ достигает 937 кВт·ч/м². В настоящее время в структуре потребления первичных энергоресурсов заметная величина (7%) приходится на нетрадиционные источники энергии, к которым относится и ветровая электроэнергетика.
Общее число ВЭУ в Дании насчитывает 3 300 агрегатов. Здесь построена первая ветроэлектростанция “морского базирования”, состоящая из 11 ВЭУ мощностью по 450 кВт каждая. Предполагается, что в 2002 г. на побережье Северного моря будет установлен парк ВЭУ общей мощностью 160 МВт, 180 ВЭУ по 2 МВт.
Дания является важнейшим экспортером оборудования для ветроэлектростанций. Подставки ВЭУ осуществляются в США (штат Калифорния), Индию, некоторые страны Европы. Изготовлением ВЭУ занимаются, как правило, предприятия сельскохозяйственного машиностроения: Vestas, Nordtank, Bonus, Nordex, Micon. Завод Vestas, например, ежегодно продает ВЭУ общей мощностью до 800 МВт. В настоящее время Дания осуществляет до 70% мирового оборота рынка ветроэнергетических установок.
Современные турбины рассчитаны на ресурс 120 тыс. ч в течение 20 лет. Для расширения диапазона снимаемой мощности на некоторых ВЭУ устанавливаются по 2 электрогенератора разной мощности: 600/150, 1000/200 или 1650/300 кВт.
По
заявлению датских
Эксплуатационные
расходы также связаны с
В Дании разработаны и предлагаются к продаже блочные ветродизельные установки с контрольно-регулирующим блоком и дизелем малой мощности для резервирования и надежного регулирования. Такие установки обеспечивают работу одиночной ВЭУ мощностью от 100 кВт и группы ВЭУ мощностью до 7 МВт, которые работают в изолированных сетях или в сетях с малой пропускной способностью.
Успешно развивается ветроэнергетика ив других европейских странах. Испанская компания EHN (наиболее крупная в мире группа в области возобновляемых источников энергии) в 1999 г. ввела в эксплуатацию несколько мощных ВЭУ. В двух испанских провинциях – Наварра и Альбасете – на ветроэлектростанции производится 22% потребляемой электроэнергии.
В Швеции ВЭС общей мощностью 500 кВт размещены в море, вблизи острова Готланд. Проектируются и более мощные системы ВЭС – на 48 и 750 МВт.
Великобритания к наземным ВЭУ общей мощностью 353 МВт добавила в 2001 г. первую ВЭС морского базирования.
В Японии до последнего времени ветроэнергетика была развита слабо. Первые ВЭС были введены в эксплуатацию только в середине 70-х гг. В конце 90-х гг. установленная мощность ВЭС составляла 30 МВт, а единичная мощность комплекса ВЭУ не превышала 3,5 МВт. Между тем использование ВЭС было признано целесообразным для электроснабжения островов, небольших удаленных от опорных точек сети потребителей. Специалисты подсчитали, что увеличение единичной мощности ВЭУ позволит снизить стоимость электроэнергии.
Самая крупная в Японии ВЭС – ветропарк, расположенный в северной части острова Хонсю. Здесь действуют 11 ВЭУ общей мощностью 3 375 кВт. Недавно на острове Хоккастдо началось сооружение ветряной фермы из 30 генераторов мощностью по 1 МВт. Стоимость проекта 47,2 млн. долларов США.
Определенные успехи в области ветроэнергетики имеют и наши соседи из ближнего зарубежья. В частности, днепропетровская фирма “Энергетические системы и оборудования” (Украина) разработало ряд ветроэлектрических установок мощностью от 20 до 420 кВт. Выбранная вертикально-осевая схема ВЭУ ЕСО-0020 мощностью 20 кВт принцип работы, которой основан на использовании подъемной силы прямых лопастей, вращающихся вокруг вертикальной оси, является альтернативой традиционным для Европы и США горизонтально-пропеллерным конструкциям. Благодаря своим особенностям (независимость от направления ветра, тихоходность турбины, простота конструкции) вертикально-осевые установки по ряду характеристик превосходят горизонтально-пропеллерные. ВЭУ рассчитана на рабочий диапазон ветров от 5 до 20 м/с, срок службы – 20 лет. Стальная опорная башня имеет высоту 14 м., материал ветротурбины – алюминиевый сплав, частота вращения – от 40 до 95 об/мин. При среднегодовой скорости ветра 6,2 м/с выработка электроэнергии составит 60 тыс. кВт·ч/год.
По таким же схеме выполнена ВЭУ ЕСО-0420, но мощность этой вертикально-осевой ВЭУ – 420 кВт. Стальная опорная ферма имеет высоту 35 м, а диаметр турбины из алюминиевого сплава – 26 м. ВЭУ рассчитана на номинальную скорость ветра 13 м/с. Но может работать в диапазоне скоростей от 5 до 25 м/с. При среднегодовой скорости ветра 6,2 м/с ВЭУ ЕСО-0420 вырабатывает 1400 тыс. кВт·ч/год. Как и в первом случае, эта ВЭУ может работать параллельно с энергосистемой или дизельным источником энергии.
В России промышленное производство ветроэнергетических установок отсутствует. Между тем еще в 80-е гг. было показано, насколько перспективно создание мощных ветроэнергетических комплексов на Севере РФ. Был разработан проект уникального комплекса – ветроэнергетической системы Кольского полуострова, который протянется на 1 100 км. В нем предусматривается 238 ветроэнергетических групп, каждая из которых будет состоять из ВЭУ новой конструкции и имеет мощность не менее 1000 МВт.
В
наши дни ветроэнергетические
Как уже известно, идеальные места для "приручения" энергии ветра – это протяженные, продуваемые со всех сторон равнины, расположенные на возвышенностях. Именно на таких территориях среднегодовая скорость ветра превышает 5 м/с, что обеспечивает эффективную работу ветроэнергетических установок.
Беларусь богата подобными территориями. По оценкам специалистов, наиболее перспективными для развития ветроэнергетики в Беларуси являются центральная и западная часть Минской области, а также Витебская возвышенность. Более того, потенциал любой точки на территории Беларуси в отношении ее перспективности или неперспективности для ветроэнергетики может быть определен с помощью соответствующих расчетов, базирующихся на информации ветроэнергетического атласа страны и специального банка данных. Вопросы окупаемости и экономической эффективности ветроэнергетических установок – сфера, где еще не расставлены все точки над "и". Если подходить к этой проблеме глобально, учитывая перспективы постоянного удорожания энергетических ресурсов и их грядущий дефицит, ветроэнергетическая техника однозначно является перспективным вложением средств. Однако в нашей стране как-то не принято строить долгосрочные планы и активно развивать направления науки и техники, противоречащие традиционному мышлению.
Отечественные сторонники ветроэнергетической концепции считают, что окупаемость таких систем не превышает 4 лет.
Одна из первых ветроэнергетических установок в стране находится на выезде из Минска в могилевском направлении. Она была разработана минской фирмой "Аэролла". Другая ветроустановка, разработанная НПГП "Ветромаш", работает в Заславле, который практически является плацдармом для отработки новых решений по энергосбережению в Беларуси. В поселке Занарочь подготовлена площадка для установки ветростанции. И, наконец, в качестве положительного примера в области энергосбережения не недавно проходившей итоговой коллегии Минжилкоммунхоза было названо сооружение ветровой установки в Городке. Здесь такая система вырабатывает энергию на случай аварийного выхода из строя обычных систем энергообеспечения.
Информация о работе Ветроэнергетика. Перспективы использования в Республике Беларусь