Автор: Михаил Текутов, 23 Ноября 2010 в 16:42, курсовая работа
Задача управления запасами возникает, когда необходимо создать запас материальных ресурсов или предметов потребления с целью удовлетворения спроса на заданном интервале времени (конечном или бесконечном). Для обеспечения непрерывного и эффективного функционирования практически любой организации необходимо создание запасов.
ВВЕДЕНИЕ 2
1. ОБОБЩЕННАЯ МОДЕЛЬ УПРАВЛЕНИЯ ЗАПАСАМИ 3
2. ТИПЫ МОДЕЛЕЙ УПРАВЛЕНИЯ ЗАПАСАМИ 5
3. ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ 8
3.1. ОДНОПРОДУКТОВАЯ СТАТИЧЕСКАЯ МОДЕЛЬ 9
3.2. ОДНОПРОДУКТОВАЯ СТАТИЧЕСКАЯ МОДЕЛЬ С «РАЗРЫВАМИ» ЦЕН 13
3.3. МНОГОПРОДУКТОВАЯ СТАТИЧЕСКАЯ МОДЕЛЬ С ОГРАНИЧЕНИЯМИ СКЛАДСКИХ ПОМЕЩЕНИЙ 15
3.4. ОДНОПРОДУКТОВАЯ N-ЭТАПНАЯ ДИНАМИЧЕСКАЯ МОДЕЛЬ 17
3.4.1. Частный случай убывающих или постоянных предельных затрат 19
4. ЗАКЛЮЧЕНИЕ 21
Заметим, что зависит от оптимального значения l* множителя l. Кроме того, при l*=0 значение является решением задачи без ограничения.
Значение l* можно найти методом систематических проб и ошибок. Так как по определению в поставленной выше задаче минимизации l<0, то при последовательной проверке отрицательных значений l найденное значение l* будет одновременно определять значения y*, которые удовлетворяют заданному ограничению в виде равенства. Таким образом, в результате определения l* автоматически получаются значения y* .
В этой модели предполагается, что, хотя спрос достоверно известен, он может изменяться от этапа к этапу. Уровень запаса контролируется периодически. Хотя запаздывание поставки (выраженное фиксированным числом периодов) допустима, в модели предполагается, что пополнение запаса происходит мгновенно в начале этапа. Наконец, дефицит не допускается.
Построение динамической детерминированной модели сводится к конечному горизонту времени. Это объясняется тем, что для получения числового решения соответствующих задач требуется использование метода динамического программирования, который в данном случае можно практически применять только при конечном числе этапов (шагов). Однако это не является серьёзным препятствием, т.к. спрос в отдалённом будущем обычно не оказывает существенное влияние на решение, принимаемое для рассматриваемого конечного горизонта времени. Кроме того, как правило, не имеет смысла предполагать, что продукция будет храниться в запасе бесконечно.
Определим для этапа i, i=1, 2, . . . , N, следующие величины:
zi – количество заказанной продукции (размер заказа),
xi – потребность в продукции (спрос),
xi – исходный запас (на начало этапа i),
hi – затраты на хранение единицы запаса, переходящей из этапа i в этап i+1,
Ki – затраты на оформление заказа,
ci(zi) – функция предельных затрат, связанных с закупкой (производством) при заданном значении zi.
Так как дефицит не
Построение модели
Прямое рекуррентное уравнение можно получить, определив состояние на шаге i как объем запаса на конец этапа i. Эти состояния заданы величинами xi+1. На любом шаге на величины xi+1 наложены следующие ограничения:
Таким образом, в предельном случае объем заказанной продукции zi на этапе i может быть настолько велик, что запас xi+1 удовлетворяет спрос на всех последующих этапов.
Пусть fi(xi+1) – минимальные общие затраты на этапах 1, 2, … , N при заданной величине запаса xi+1 на конец этапа i. Тогда рекуррентное уравнение записывается в виде
Прямая и обратная постановка задачи с вычислительной точки зрения эквивалентны. Однако прямой алгоритм наиболее эффективен при анализе важного частного случая рассмотренной выше модели.
Рассмотренную модель
Рисунок
9.
При указанных выше условиях можно доказать следующее:
Из первого свойства теоремы следует, что на любом этапе i нерационально пополнять запас и размещать заказ в одно и тоже время. Так, предположим, что минимальные предельные затраты на приобретение и хранение одной дополнительной единицы продукции из предыдущего этапа i’ на рассматриваемом этапе i” (i’<i”) равны b’, тогда как предельные затраты на размещение заказа на одну дополнительную единицу в начале этапа i” составляют b”.
Если b”<=b’, то размер заказа на этапе i” можно увеличить, полностью удовлетворив спрос на этапе i”, не повышая полных затрат относительно условия, когда спрос удовлетворяется за счет запаса, имеющегося на этапе i’. Этот результат объясняется тем, что предельные затраты не возрастают. Следовательно, выполнение условия xi”zi”=0 обеспечивает решение, которое по меньшей мере не хуже любого другого. С другой стороны, если b”>b’, то выгоднее увеличить размер заказа на этапе i’, удовлетворив спрос на этапах i’ и i”, вследствие чего размер заказа на этапе i” равен нулю. Этот вывод также следует из условия не возрастания предельных затрат. Отсюда вытекает, что условие xizi=0 не приводит к какому-либо ухудшению решения при условии, что предельные затраты постоянны или убывают, а исходный запас равен нулю. Второе свойство, в соответствии с которым требуется размещение заказа, покрывающего спрос одного или нескольких этапов, непосредственно вытекает из первого свойства.
Описанные выше свойства (в случае
их применимости) позволяют упростить
вычислительную схему, в
Так как в соответствии со вторым свойством объем запаса к концу этапа i, т.е. xi+1, должен в точности соответствовать потребностям одного или более последующих этапов, то число оценок состояния системы на любом этапе определяются числом последующих этапов (а не количеством единиц продукции, требуемой на последующих этапах, как это имеет место в обычной модели). Например, пусть N=5 при спросе 10, 15, 20, 50 и 70 соответственно. Тогда к концу третьего этапа (шага) число оценок состояния x4 в обычной модели будет 50+70+1=121, тогда как в новой модели оно сокращается до трёх (оставшееся число этапов плюс один), т.к. x4 может принимать только значения 0, 50 или 120. Аналогичное рассуждение, основанное на первом свойстве, также показывает, что число альтернатив zi в новой модели намного меньше. В результате объем вычислений для этой модели весьма существенно сокращается.
В любой задаче управления
запасами решается вопросы
В большинстве моделей
Известные модели управления запасами редко точно описывают реальную систему. Поэтому решение, получаемое на основе моделей этого класса, следует рассматривать скорее как принципиальные выводы, а не конкретные рекомендации. В ряде сложных случаев приходится прибегать к методам имитационного моделирования системы, чтобы получить достаточно надежное решение.