Автор: Пользователь скрыл имя, 20 Марта 2012 в 03:18, доклад
Классическое определение вероятности Р(А) события А как отношения числа благоприятных элементарных исходов m к числу всех элементарных исходов n предполагает, что все элементарные исходы равновероятны. Однако, это условие далеко не всегда выполняется, поэтому мы сейчас введем еще одно определение вероятности - статистическое (или частотное). Как оценить вероятность интересующего нас события, если в процессе испытания элементарные исходы вовсе не обязаны быть равновероятными?
Теорема сложения вероятностей для несовместных событий и в общем случае.
Классическое определение вероятности Р(А) события А как отношения числа благоприятных элементарных исходов m к числу всех элементарных исходов n предполагает, что все элементарные исходы равновероятны. Однако, это условие далеко не всегда выполняется, поэтому мы сейчас введем еще одно определение вероятности - статистическое (или частотное). Как оценить вероятность интересующего нас события, если в процессе испытания элементарные исходы вовсе не обязаны быть равновероятными? Строго говоря, необходимо было бы много раз проделать интересующий нас опыт и узнать частоту реализации различных элементарных исходов. В пределе, при увеличении числа испытаний, отношение числа m реализованных событий А к общему количеству испытаний n и будет определять вероятность Р(А)=m/n. Важно понимать, что статистический подход не противоречит классическому, а лишь расширяет границы возможного применения аппарата теории вероятностей. Поэтому все приемы, которые Вы уже освоили в рамках классической схемы, можно будет использовать и в дальнейшем. Для решения практических задач нам понадобятся следующие важные теоремы.
1. Теорема сложения вероятностей для несовместных событий: P(A + B) = P(A) + P(B) - вероятность наступления в результате эксперимента хотя бы одного из двух несовместных событий равна сумме вероятностей этих событий. Обсуждение. Напомним, что события А и В называются несовместными, если в результате опыта они не могут появиться вместе. (Пожалуйста, не путайте их с независимыми событиями, которые мы обсуждали в прошлом разделе. Независимые события могут спокойно сосуществовать друг с другом.)
Пример. По статистике, в прошлом году 10% жителей нашего города встретили Новый год в отъезде, 40% ходили в гости или в ресторан, оставаясь в городе, остальные встречали Новый год дома. Считая, что эта тенденция сохранится, посчитайте вероятность того, что житель нашего города встретит Новый год дома. Решение: здесь можно смело пользоваться теоремой сложения вероятностей, т.к. события встречи Нового года в разных местах одним и тем же человеком - несовместны. Поэтому все, кто встретит Новый год в гостях или в другом городе (они составят вместе 40%+10%), не смогут встретить его дома. Принимая общее число жителей города за 100%, найдем, что 50% оставалось дома в прошлый раз. Полагая, что эти же пропорции сохранятся и в этом году, найдем, что вероятность встретить Новый год дома для жителя нашего города равна Р=0,5. (Заметим, что в данном случае нам было удобно посчитать сначала вероятность обратного события, а потом вычесть результат из 100%.)
Что произойдет, с нашими оценками, если исходные события не являются несовместными? Давайте немного изменим предыдущий пример.
Пример. Владелец фирмы частных такси хочет сделать прогноз количества клиентов на новогоднюю ночь. Пусть, по его сведениям, в прошлом году Новый год встретили дома 50%, в компании друзей или родственников, но не выезжая из города - 80%, в отъезде были 10%. Почему у него получилось в сумме больше 100%? Видимо, каких-то жителей он посчитал больше одного раза. Скорее всего, тех, кто сидел дома, но, одновременно, принимал друзей или родственников, которые пришли к нему в гости. Поскольку эти события не являются несовместными, просто складывая вероятности, он завышает свои оценки. Впрочем, это относится не только к оценке вероятности события, но и к решению любых задач на подсчет элементов объединения двух множеств путем сложения. Если множества частично перекрываются, сумма их элементов будет больше, чем реальное количество элементов, поскольку при арифметическом сложении элементы этого "перекрытия" мы невольно посчитали дважды, и как входящие в первое множество, и как входящие во второе. Выход здесь один: мы должны заметить, что множества частично "перекрываются", посчитать число элементов в их общей части и вычесть это число из суммы (т.к. при суммировании мы его посчитали дважды)
В случае подсчета вероятности события С, которое наступает или при наступлении события А, или при наступлении события В, если А и В не являются несовместными, можно воспользоваться следующей теоремой:
2. Общая теорема сложения вероятностей: Р(С)=Р(А)+Р(В)-Р(АВ), где Р(АВ) - вероятность одновременного наступления и события А, и события В.
Информация о работе Теорема сложения вероятностей для несовместных событий и в общем случае