Автор: Пользователь скрыл имя, 11 Февраля 2013 в 18:13, доклад
Электрический привод представляет собой электромеханичёское устройство, предназначенное для приведения в движение рабочего органа машины и управления ее технологическим процессом. Он состоит из трех частей: электрического двигателя, осуществляющего электромеханическое преобразование энергии, механической части, передающей механическую энергию рабочему органу машины, и системы управления, обеспечивающей оптимальное по тем или иным критериям управление технологическим процессом. Характеристики двигателя и возможности системы управления определяют производительность механизма, точность выполнения технологических операций,
1 Определение понятия «электропривод»
2 Классификация электроприводов
3 Режимы работы электропривода
4 Уравнения движения электропривода при поступательном и вращательном движении
5 Влияние параметров , , на вид скоростных (механических) характеристик двигателя постоянного тока с параллельным возбуждением. Регулирование скорости вращения двигателя
6 Влияние параметров (сопротивление роторной цепи), , f на вид механических характеристик асинхронного двигателя с короткозамкнутым и фазным ротором. Способы регулирования скорости вращения асинхронных двигателей
7 Расчет для двигателя постоянного тока с параллельным возбуждением с параметрами: ДП-41 ступени пусковых сопротивлений. Изобразить схему включения сопротивлений в цепь якоря и соответствующие характеристики
8 Расчет для асинхронного двигателя с фазным ротором с параметрами: МТВ311-8 ступени пусковых сопротивлений. Изобразить схему включения сопротивлений в цепь ротора и соответствующие расчетные характеристики
Список литературы
СОДЕРЖАНИЕ
1 Определение понятия «электропривод»
2 Классификация электроприводов
3 Режимы работы электропривода
4 Уравнения движения
5 Влияние параметров , , на вид скоростных (механических) характеристик двигателя постоянного тока с параллельным возбуждением. Регулирование скорости вращения двигателя
6 Влияние параметров (сопротивление роторной цепи), , f на вид механических характеристик асинхронного двигателя с короткозамкнутым и фазным ротором. Способы регулирования скорости вращения асинхронных двигателей
7 Расчет для двигателя постоянного тока с параллельным возбуждением с параметрами: ДП-41 ступени пусковых сопротивлений. Изобразить схему включения сопротивлений в цепь якоря и соответствующие характеристики
8 Расчет для асинхронного двигателя с фазным ротором с параметрами: МТВ311-8 ступени пусковых сопротивлений. Изобразить схему включения сопротивлений в цепь ротора и соответствующие расчетные характеристики
Список литературы
Определение понятия «электропривод»
Электрический привод представляет
собой электромеханичёское
Рисунок 1.1 – Схема автоматизированного электропривода
Классификация электроприводов
Электроприводы по
способам распределения
Рисунок 2.1 – Структурная схема группового трансмиссионного электропривода.
Вследствие своего технического несовершенства трансмиссионный электропривод в настоящее время почти не применяется, он уступил место индивидуальному и взаимосвязанному, хотя в ряде случаев еще находит применение и групповой привод по схеме на рисунке 2.2.
Схема системыгруппового пуска синхронных высоковольтных синхронных электроприводов турбокомпрессоров
Индивидуальный привод по сравнению с трансмиссионным и групповым обладает рядом преимуществ: производственные помещения не загромождаются тяжелыми трансмиссиями и передаточными устройствами; улучшаются условия работы и повышается производительность труда вследствие облегчения управления отдельными механизмами, уменьшения запыленности помещений, лучшего освещения рабочих мест; снижается травматизм обслуживающего персонала. Кроме того, индивидуальный электропривод отличается более высокими энергетическими показателями. В трансмиссионном приводе при выходе из строя или при ремонте электродвигателя выбывает из работы группа машин, тогда как в случае индивидуального привода или группового по схеме на рисунке 2.2 остановка одного электродвигателя вызывает остановку лишь одной рабочей машины.
Рисунок 2.3 – Индивидуальные
электроприводы рабочих органов (шпинделей)
продольно-фрезерного станка.
Индивидуальный электропривод широко применяется в различных современных машинах, например в сложных металлорежущих станках, в прокатных станах металлургического производства, в подъемно-транспортных машинах, экскаваторах, в роботах-манипуляторах и т. п. Примером использования индивидуального привода может служить продольно-фрезерный станок (рисунок 2.3), имеющий отдельные электроприводы главных движений (приводы трех шпиндельных бабок). Взаимосвязанный электропривод содержит два или несколько электрически или механически связанных между собой электродвигательных устройства (или электроприводов), при работе которых поддерживается заданное соотношение или равенство скоростей или нагрузок или положение исполнительных органов рабочих машин. Необходимость в таком приводе часто возникает по конструктивным пли технологическим соображениям. Примером взаимосвязанного электропривода может служить привод цепного конвейера. На рисунке 2.4 показана схема такого привода, рабочим органом которого является цепь, приводимая в движение двумя или несколькими двигателями (М1, М2), расположенными вдоль цепи. Эти двигатели имеют вынужденно одинаковую скорость. Взаимосвязанный электропривод широко применяется в различных современных машинах и агрегатах, например в копировальных металлорежущих станках и станках с программным управлением, в бумагоделательных машинах, ротационных машинах полиграфического производства, и текстильных агрегатах, в прокатных станах металлургического производства, в поточных технологических линиях но производству шинного корда, синтетических пленок и т. д.
Рисунок 2.4 – Схема взаимосвязанного привода конвейера.
По виду движения
электроприводы могут
РЕЖИМЫ РАБОТЫ ЭЛЕКТРОПРИВОДА
Все режимы в электроприводе делятся на установившиеся (номинальный режим работы) и переходные (пуск, реверс, торможение).Установившийся режим работы электропривода определяется из условия равенства нулю динамического момента. Этот режим характеризуется работой двигателя с неизменной угловой скоростью, постоянными во времени и равными по величине моментом двигателя и моментом сопротивления. Так как момент, развиваемый двигателем в установившемся режиме, есть функция скорости, то равенство М=Мс возможно только при условии, что момент сопротивления — постоянная величина или функция скорости. Если МС есть функция, например, пути (угла поворота), то даже при постоянной угловой скорости момент сопротивления изменяется во времени и установившийся режим невозможен. Установившийся режим описывается статическими характеристиками.Переходным режимом электропривода называют режим работы при переходе от одного установившегося состояния к другому, когда изменяются скорость, момент и ток. Причинами возникновения переходных режимов в электроприводах является либо изменение нагрузки, связанное с производственным процессом, либо воздействие на электропривод при управлении им, т. е. пуск, торможение, изменение направления вращения и т. п. Переходные режимы в электроприводах могут возникнуть также в результате аварий или нарушения нормальных условий электроснабжения (например, изменения напряжения или частоты сети, несимметрия напряжения и т. п.).Характер переходного режима электропривода зависит от свойств рабочей машины, типа примененного двигателя и механической передачи, принципа действия и свойств аппаратуры управления, а также от режима работы двигателя (пуск, торможение, прием и сброс нагрузки и т. д.). Переходные режимы описываются динамическими характеристиками.
Уравнения движения электропривода при поступательном и вращательном движении.
Электродвигатели, преобразующие
электрическую энергию в
(4.1)
В системах электропривода основным режимом работы электрической машины является двигательный. При этом момент сопротивления имеет тормозящий характер по отношению к движению ротора и действует навстречу моменту двигателя. Поэтому положительное направление момента сопротивления принимают противоположным положительному направлению момента двигателя, в результате чего уравнение (4.1) записывается в виде:
(4.2)
Уравнение движения привода (4.2) показывает, что развиваемый двигателем вращающий момент уравновешивается моментом сопротивления на его валу и инерционным или динамическим моментом . В этом уравнении принято, что момент инерции привода является постоянным, что справедливо для значительного числа производственных механизмов. Здесь моменты являются алгебраическими, а не векторными величинами, поскольку оба момента и действуют относительно одной и той же оси вращения. Правую часть уравнения (4-2) называют инерционным (динамическим) моментом ( ), т.е.
(4.3)
Этот момент проявляется только во время переходных режимов, когда изменяется скорость привода. Из (4.3) следует, что направление динамического момента всегда совпадает с направлением ускорения электропривода.В зависимости от знака динамического момента различают следующие режимы работы электропривода:
) , т.е. , имеет место ускорение привода при , и торможение привода при .
2) , т.е. , имеет место замедление привода при , и ускорение при .
3) , т.е. , в данном случае привод работает в установившемся режиме, т.е. .В общем виде уравнение движения привода может быть записано следующим образом:
Выбор знаков перед значениями моментов зависит от режима работы двигателя и характера моментов сопротивления.Наряду с системами, имеющими только элементы, находящиеся во вращательном движении, иногда приходится встречаться с системами, движущимися поступательно. В этом случае вместо уравнения моментов необходимо рассматривать уравнение сил, действующих на систему. При поступательном движении движущая сила всегда уравновешивается силой сопротивления машины и инерционной силой , возникающей при изменениях скорости. Если масса тела выражена в килограммах, а скорость — в метрах в секунду, то сила инерции, как и другие силы, действующие в рабочей машине, измеряются в ньютонах. В соответствии с изложенным уравнение равновесия сил при поступательном движении записывается так:
(4.4)
В (4.4) принято, что масса тела является постоянной, что справедливо для значительного числа производственных механизмов. Сказанное выше о классификации и знаках моментов полностью справедливо и для сил, действующих на систему.
Влияние параметров
Регулированием скорости называется целенаправленное принудительное изменение скорости двигателя посредством специального устройства или приспособления, независимо от величины и характера нагрузки, в соответствии с требованиями, предъявляемыми к закону движения рабочего органа механизма. Установленная при регулировании скорость при отсутствии воздействия на регулирующее приспособление в дальнейшем изменяется по механической характеристике электропривода в соответствии с нагрузкой. Регулирование скорости позволяет наиболее рационально использовать производственные механизмы, обеспечить оптимальные режимы их работы и, как правило, уменьшить расход энергии. Двигатели параллельного возбуждения, питаемые от источника постоянного напряжения, применяются обычно для длительного режима работы, когда требуется широкое регулирование частоты вращения, например для металлообрабатывающих станков, для листоправильных машин в прокатных станах, для главных приводов трубопрокатных станов и т. п. Выражение скорости вращения двигателя постоянного тока: