Автор: Пользователь скрыл имя, 02 Октября 2011 в 21:07, курсовая работа
Эконометрика - это наука, лежащая на стыке между статистикой и математикой, она разрабатывает экономические модели для цели параметрической идентификации, прогнозирования (анализа временных рядов).
ВВЕДЕНИЕ
I. ОСНОВНАЯ ЧАСТЬ
ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ПАРНОЙ ЛИНЕЙНОЙ ЭКОНОМЕТРИЧЕСКОЙ МОДЕЛИ
КРИТЕРИЙ ФИШЕРА
ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ПАРНОЙ НЕЛИНЕЙНОЙ РЕГРЕССИИ
ПРОГНОЗИРОВАНИЕ СПРОСА НА ПРОДУКЦИЮ ПРЕДПРИЯТИЯ. ИСПОЛЬЗОВАНИЕ В MS EXCEL ФУНКЦИИ "ТЕНДЕНЦИЯ"
СПИСОК ЛИТЕРАТУРЫ
МОСКОВСКИЙ ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
Тверской филиал
Кафедра
общегуманитарных дисциплин
КОНТРОЛЬНАЯ РАБОТА
Специальность: Бухгалтерский учет, анализ и аудит.
Учебная
дисциплина: "Эконометрика"
студентки 3 курса группа ББ-341
факультет экономики и управления
Тимофеевой Татьяны Евгеньевны
Проверил
Снастин Александр Анатольевич
доцент, к. т. н.
2008 г.
План
Классификация эконометрических моделей и методов.
Эконометрика
- это наука, лежащая на стыке между
статистикой и математикой, она разрабатывает
экономические модели для цели параметрической
идентификации, прогнозирования (анализа
временных рядов).
Классификация эконометрических моделей и методов.
|
Эконометрические модели параметрической идентификации | Эконометрические модели для цели прогнозирования | Система эконометрических моделей |
(установление
параметров (есть ли тренд) (комплексная
модели) оценка)
y=a+b+x
y=a+b*t y=a+b1x1-b2x2
y
- зависимая переменная (отклик), прибыль,
например. x - независимая переменная (регрессор),
какова численность персонала, например.
На основании наблюдений оцениваются
a и b (определение параметров моделей или
регрессионные коэффициенты).
№ п/п | y | x |
1 | 11 | 1 |
2 | 13 | 2 |
3 | 14 | 3 |
4 | 12 | 4 |
5 | 17 | 5 |
6 | 16,7 | 6 |
7 | 17,8 | 7 |
На основании наблюдений оценивается a и b (определение параметров моделей или регрессионные коэффициенты).
Параметрическая идентификация занимается оценкой эконометрических моделей, в которых имеется один или несколько x и один y. Для целей установления влияния одних параметров работы предприятия на другие.
Если x в первой степени и нет корней, ни степеней, нет 1/x, то модель линейная.
y=axb - степенная функция;
y=abx - показательная функция;
y=a1/x
- парабола односторонняя.
Y -прибыль
- степенная функция
x – численность
Выбираем наиболее надежную модель. После построения по одним и тем же эксперт данным одной линейной и нескольких нелинейных моделей над каждой из полученных моделей производим две проверки.
1 - на надежность модели или статистическую значимость. Fкр - или критерий Фишера. Табличное F и расчетное F. Если Fp > Fтабл. - то модель статистически значима.
2 - Отобрав из моделей все значимые модели, среди них находим самую точную, у которой минимальная средняя ошибка аппроксимации.
Эконометрические модели для прогнозов исследуют поведение одного параметра работы предприятия во времени.
По
семи областям региона известны значения
двух признаков за 2007г.
Район | Расходы на покупку продовольственных товаров в общих расходах,%, у | среднедневная заработная плата одного работающего, руб., х |
1 | 68,8 | 45,1 |
2 | 61,2 | 59 |
3 | 59,9 | 57,2 |
4 | 56,7 | 61,8 |
5 | 55 | 58,8 |
6 | 54,3 | 47,2 |
7 | 49,3 | 55,2 |
№п/п | Y | x | ух | Х2 | ŷ | (ŷ - у) 2 | (у - ŷ) 2 | (y-ŷ) /y |
1 | 68,80 | 45,10 | 3102,88 | 2034,01 | 61,33 | 11,8286862 | 55,87562 | 0,108648 |
2 | 61, 20 | 59,00 | 3610,80 | 3481,00 | 56,46 | 2,0326612 | 22,46760 | 0,077451 |
3 | 59,90 | 57, 20 | 3426,28 | 3271,84 | 57,09 | 0,6331612 | 7,89610 | 0,046912 |
4 | 56,70 | 61,80 | 3504,06 | 3819,24 | 55,48 | 5,7874612 | 1,48840 | 0,021517 |
5 | 55,00 | 58,80 | 3234,00 | 3457,44 | 56,53 | 1,8379612 | 2,34090 | 0,027820 |
6 | 54,30 | 47, 20 | 2562,96 | 2227,84 | 60,59 | 7,3131612 | 39,56410 | 0,115840 |
7 | 49,30 | 55, 20 | 2721,36 | 3047,04 | 57,79 | 0,0091612 | 72,08010 | 0,172210 |
Итого | 405, 20 | 384,30 | 22162,34 | 21338,41 | 405,27 | 29,4422535 | 201,7128 | 0,570398 |
Средн. з | 57,89 | 54,90 | 3166,05 | 3048,34 | 57,90 | 4, 2060362 | 28,81612 | 0,081485 |
y
x
yx
x2
Исходные данные x и y могут быть двух типов:
а) рассматриваем одно предприятие, то наблюдения берутся через равностоящие промежутки времени (1 в квартал);
б) если каждое наблюдение - это отдельное предприятие, то данные берутся на одну и ту же дату, например, на 01.01.07
у
- расходы на продовольственные товары
в процентах; траты, например, на еду.
b = | yx-yx | (Гаусс) |
xІ - (x) І |
х - среднедневная заработная плата, в руб.
у
= а + b х - линейная парная регрессионная
ЭМ.
=-0.35 a=y - b x =76,88
b = (3166,049-57,88571*54,9) / (3048,344-54,9) = - 0,35
а = 57,88571 - ( - 0,35) *54,9 = 77,10071
ŷ = а+bх
ŷ
= 77,10071-0,35х
ŷ (игрек с крышечкой) = 76,88-0,35х -это модельное значение y, которое получается путем подстановки в y = a + b x, конкретное значение a и b коэффициенты, а также x из конкретной строчки.
Fрасч = | Σ (ŷ -y) 2 m |
Σ (y - ŷ) 2 (n-m-1) |
n - количество наблюдений;
m - количество регрессоров (x1)
Допустим,
0,7. Fкрит не может быть меньше единицы,
поэтому, если мы получим значение < 1,
то
Fрасч = | 1 |
0,7 |
- обратное значение. =1,4
1.
Таблица значений F-критерия Фишера для
уровня значимости α = 0.05
k2\k1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 12 | 24 | ∞ |
1 | 161,45 | 199,50 | 215,72 | 224,57 | 230,17 | 233,97 | 238,89 | 243,91 | 249,04 | 254,32 |
2 | 18,51 | 19,00 | 19,16 | 19,25 | 19,30 | 19,33 | 19,37 | 19,41 | 19,45 | 19,50 |
3 | 10,13 | 9,55 | 9,28 | 9,12 | 9,01 | 8,94 | 8,84 | 8,74 | 8,64 | 8,53 |
4 | 7,71 | 6,94 | 6,59 | 6,39 | 6,26 | 6,16 | 6,04 | 5,91 | 5,77 | 5,63 |
5 | 6,61 | 5,79 | 5,41 | 5, 19 | 5,05 | 4,95 | 4,82 | 4,68 | 4,53 | 4,36 |
6 | 5,99 | 5,14 | 4,76 | 4,53 | 4,39 | 4,28 | 4,15 | 4,00 | 3,84 | 3,67 |
7 | 5,59 | 4,74 | 4,35 | 4,12 | 3,97 | 3,87 | 3,73 | 3,57 | 3,41 | 3,23 |
8 | 5,32 | 4,46 | 4,07 | 3,84 | 3,69 | 3,58 | 3,44 | 3,28 | 3,12 | 2,93 |
9 | 5,12 | 4,26 | 3,86 | 3,63 | 3,48 | 3,37 | 3,23 | 3,07 | 2,90 | 2,71 |
10 | 4,96 | 4,10 | 3,71 | 3,48 | 3,33 | 3,22 | 3,07 | 2,91 | 2,74 | 2,54 |
11 | 4,84 | 3,98 | 3,59 | 3,36 | 3, 20 | 3,09П | 2,95 | 2,79 | 2,61 | 2,40 |
Когда m=1, выбираем 1 столбец.
k2=n-m=7-1=6 - т.е.6-я строка - берем табличное значение Фишера
Fтабл=5.99, у ср. = итого: 7
Влияние х на у - умеренное и отрицательное
ŷ
- модельное значение.
F расч. = | 28,648: 1 | = 0,92 |
200,50: 5 |
А
= 1/7 * 398,15 * 100% = 8,1% < 10% -
приемлемое значение
Модель достаточно точная.
F расч. = 1/0,92 =1,6
F расч. = 1,6 < F табл. = 5,99
Должно
быть Fрасч. > Fтабл
Нарушается данная модель, поэтому данное уравнение статистически не значимо.
Так
как расчетное значение меньше табличного
- незначимая модель.
Ā ср= | 1 | Σ | (y - ŷ) | *100% |
N | y |
Ошибка
аппроксимации.
A=
1/7*0,563494* 100% = 8,04991% 8,0%
Считаем, что модель точная, если средняя ошибка аппроксимации менее 10%.
Модель у = а * хb - степенная функция
Чтобы
применить известную формулу, необходимо
логарифмировать нелинейную модель.
log у = log a + b log x
Y=C+b*X
-линейная модель.
b = | yx-Y*X |
xІ- (x) І |
Информация о работе Классификация эконометрических моделей и методов