Этапы развития электроэнергетики россии

Автор: Пользователь скрыл имя, 19 Февраля 2013 в 17:44, курсовая работа

Описание работы

Развитие экономики любой страны, на настоящем этапе развития цивилизации, невозможна без использования энергии. Наиболее универсальная форма энергии - электричество. Оно вырабатывается на электростанциях и распределяется между потребителями посредством электрических сетей коммунальными службами. Производительность - и, в конечном счете, прибыль - в значительной степени зависит от стабильности подачи энергии. Прекращение подачи электроэнергии парализует все виды деятельности. Наличие энергии - одно из необходимых условий для решения практически любой задачи в современном мире.

Содержание

Введение 4
1. Развитие энергосистем России 5
1.1. План ГОЭЛРО (1920-1935) 5
1.2. Развитие энергетики (1935- конец 80) 7
1.3. Развитие энергетики (1990-2010) 9
1.3.1. Структура ЕЭС России до 2009 года 14
1.4. Прогноз развития энергетики России до 2020 16
2. Электрические сети энергосистем России 19
2.1. Региональные особенности электроэнергетики 19
2.2. Основные сведения о энергосистемах России 20
2.3. Износ энергооборудования и электрических сетей России 26
Заключение 28
Литература 31

Работа содержит 1 файл

Пономарев С.Л. Этапы развития электроэнергетики России.doc

— 961.50 Кб (Скачать)

На территории России действуют изолированно работающие энергосистемы Якутии, Магадана, Сахалина, Камчатки, районов Норильска и Кольты.

В целом энергоснабжение потребителей России обеспечивают 74 территориальных  энергосистемы( Рис. 1.2.)

 

Рис. 1.2. Структурная схема энергетической системы России

"Татэнерго" и  "Иркутскэнерго" не входят  в состав холдинга, а в "Новосибирскэнерго" и "Башкирэнерго" РАО "ЕЭС" не владеет блокирующим пакетом (доля РАО в "Новосибирскэнерго" составляет 14,2%, в Башкирэнерго - 21,3%). 54% акций Красноярской ГЭС контролируются структурами, близким к ОАО "Русский Алюминий", и только 24% принадлежат "Красноярскэнерго".

В состав РАО "ЕЭС" входят 7 территориальных объединенных энергосистем (ОЭС): Центра, Северного Кавказа, Северо-Запада, Сибири, Урала, Средней Волги и  Востока, связанных между собой  магистральными линиями электропередач. Диспетчерское управление сетями в рамках всей системы выполняет центральное диспетчерское управление (ЦДУ), в рамках отдельных энергосистем – ОДУ (объединенные диспетчерские управления).

Федеральные сети находятся  в собственности материнской  компании РАО "ЕЭС", региональные - в собственности АО-энерго

[http://data.rbc.ru/public/031/showb.cgi?030203031.html].

Параллельно с ЕЭС  России работают энергосистемы стран  Балтии, Белоруссии, Закавказья и отдельные  районы Украины. Параллельно, но не синхронно  с ЕЭС (через вставку постоянного тока) работает энергосистема Финляндии, входящая в объединение стран Северной Европы (NORDEL) От сетей ЕЭС России осуществляется также приграничная торговля электроэнергией с Норвегией, Монголией и Китаем, а также передача электроэнергии в Болгарию [2].

 

1.4. Прогноз развития  энергетики России до 2020

К 2020 году, согласно официальным  прогнозам РАО ЕЭС, производство электроэнергии в России должно увеличиться  на 70% - 100%. 

Прогнозы роста потребления  электроэнергии у РАО ЕЭС меняются каждые два - три месяца. Тем не менее, вот некоторые цифры. В феврале 2007 года председатель правления РАО ЕЭС Анатолий Чубайс6 заявил о 5% ежегодного темпа роста энергопотребления. В проекте “Генеральной схемы размещения объектов электроэнергетики до 2020 года”, обнародованном осенью этого года, говорится о двух основных вариантах развития ситуации в отрасли. Согласно “оптимистическому” сценарию, рост энергопотребление может составить в период до 2020 года в среднем 5,2% ежегодно. В “базовом” варианте - 4,1% роста каждый год. В ноябре 2007 года Анатолий Чубайс заявил о том, что рост энергопотребления в ближайшие годы составит 4,1% и “даже выше” (рис. 1.2.).

 Рис. 1.2. Производство  электроэнергии в Российской  федерации в 1991-2020гг., млрд. кВт/ч

Результат – исходя из прогнозируемого роста энергопотребления в 4,1% сформированы инвестиционные программы РАО ЕЭС и “Росэнергоатома”. Они предусматривают выход к 2010 году на уровень ввода в год 8,4 ГВт новых мощностей, а к 2014-2015 году – на уровень 14, 5 ГВт. И даже до 20,3 ГВт к 2015 году, если исходить из “оптимистичного” варианта прогнозов, предусматривающего ежегодный рост потребления в 5,2% в год (рис. 1.3.). В дальнейшем эти параметры пересматривались лишь в сторону повышения.

 
Рис 1.3. Прогнозируемый рост энергопотребления

С 2000 года в России в год вводились  не более 2 ГВт генерирующих мощностей. В основном достраивались энергоблоки, строительство которых было начато еще в советский период. С “нуля” был построен лишь один крупный блок – блок №1 Калининградской ТЭЦ-2 мощностью 0,45 ГВт. Его строительство растянулось на 36 месяцев вместо среднемировых 18 для такого типа блоков и обошлось в полтора раза дороже строительства таких блоков в Европе и Северной Америке.

Рис 1.4. Прогнозируемый ввод генерирующих мощностей на  
электростанциях России

По данным Международного энергетического агентства, энергоемкость  ВВП России в 11 раз выше, чем в  Германии, в 6 раз выше, чем в Канаде, в 4 раза больше, чем в Польше. Внедрение  самых очевидных мер по энергосбережению (рационализация работы осветительных приборов, теплоизоляция и т.д.) может дать 10-15% снижения затрат электроэнергии. Сопоставимый эффект может принести изменение суточного и недельного профиля графика энергопотребления - смещения пиков нагрузки на выходные дни и ночные часы (возможность приобретать электроэнергии по более низким тарифам).

Прогноз Минэнерго, полагавшего, что  спрос на электроэнергию вернется на докризисный уровень лишь к 2012–2013 годам, оказался слишком пессимистичным. Потребление в первом квартале 2010-го оказалось на 0,5% выше уровня января-марта 2008 года. А по сравнению с прошлым годом рост составил 5,9%, хотя ведомство ожидало увеличения всего на 3,1%. Конечно, спрос был во многом обеспечен погодным фактором (холодная зима). Тем не менее, Минэнерго повысило прогноз роста энергопотребления на 2010 год в 6,5 раза – с 0,4 до 2,6% (рис. 1.4.).

Рис. 1.4. Потребление электроэнергии,

 млрд. КВт.ч.

Энергокомпании в условиях дефицита электроэнергии будут более  эффективно выстраивать свои ремонтные  компании, повышать коэффициент использования установленной мощности, снижать затраты электроэнергии на собственные нужды,  потери на транспорт электроэнергии и т.д. В совокупности эти меры дадут, с нашей точки зрения, снижение прироста энергопотребления в течении трех-четырех лет с нынешних 2,2%. Что означает сокращение объемов необходимых новых вводов до 3-5 ГВт в год. Необходимо строительство новых генерирующих мощностей.

[http://www.proatom.ru/modules.php?name=News&file=article&sid=1234]

2. Электрические сети энергосистем России

2.1. Региональные особенности электроэнергетики

Единая энергосистема  России имеет неоднородную сетевую  структуру. В ее рамках лишь пять из семи объединенных энергосистем (соответствующие  основным территориально-экономическим  районам - Северо-Запад, Центр, Средняя  Волга, Урал, Северный Кавказ) включены на параллельную работу с общей частотой электрического тока и обмениваются электроэнергией по линиям межсистемной связи высокого и сверхвысокого напряжения. Объединенная энергосистема (ОЭС) Дальнего Востока не имеет электрических связей с остальной частью ЕЭС, работает изолированно и лишь условно причисляется к Единой энергосистеме, поскольку основные линии связи ОЭС Сибири с Европейской частью ЕЭС после распада СССР остались на территории Казахстана, и в силу незначительных размеров существующих перетоков мощности между ОЭС Сибири и Европейской частью ЕЭС, ОЭС Сибири также может рассматриваться как изолированно работающая часть ЕЭС.

Отличительной особенностью Европейской части ЕЭС является ограниченная пропускная способность  линий связей между ОЭС, что является причиной высокой степени энергетической независимости ОЭС друг от друга. (Отношение суммарной пропускной способности линий электропередач, связывающих ОЭС между собой и способных войти в состав так называемой «единой национальной сети», к суммарной фактической мощности электрической нагрузки двух смежных ОЭС находится в пределах 3-7%. Такая пропускная способность межсистемных ЛЭП позволяет получать лишь аварийную помощь от других параллельно работающих ОЭС, но не обеспечивает экономически целесообразные обмены электроэнергией в рамках единого рынка).

Так, например, отношение  объема собственной генерации к  собственному электропотреблению для  пяти ОЭС Европейской части ЕЭС  находится в пределах от 1,22 (ОЭС  Средней Волги) до 0,86 (ОЭС Северного  Кавказа). При этом для наиболее крупных ОЭС (Центр и Урал), на долю которых приходится около 70% всего объема производства электроэнергии в Европейской части ЕЭС, это соотношение близко к единице.

Доля Европейской части  ЕЭС и Урала превышает 70% всей установленной мощности электростанций и электропотребления в ЕЭС. Тепловые электростанции в этой части ЕЭС используют в основном природный газ, а также разные виды угля. Среди производителей электроэнергии есть АЭС и ГЭС. Генерация относительно равномерно распределена по обслуживаемой территории. Основная электрическая сеть сравнительно хорошо развита.

В структуре электропотребления доля промышленности составляет от 24% (Северный Кавказ) до 62% (Урал), доля населения - от 11% (Урал) до 31% (Северный Кавказ).

Доля ОЭС Сибири составляет около 20% в общей установленной мощности и в электропотреблении ЕЭС и характеризуется тем, что около 50% генерации составляют ГЭС. Определяющим топливом для тепловых электростанций является уголь, причем около 65% этих электростанций составляют ТЭЦ. Доля промышленного электропотребления - 63%, причем примерно 2/3 потребления промышленности приходится на цветную металлургию. Доля населения превышает 13%.

Крупные электростанции (главным образом ГЭС) в Сибири строились с привязкой к ним  крупных энергоемких потребителей. В суровых климатических условиях превалирование городского населения приводило к повсеместному сооружению привязанных к городам ТЭЦ. Вследствие размещения электростанций преимущественно в местах потребления электроэнергии, а также большой протяженности территории в широтном направлении при сравнительно низкой плотности населения основная электрическая сеть существенно менее развита по сравнению с европейской зоной и Уралом.

ОЭС Дальнего Востока  составляет около 6% мощности электростанций и электропотребления от общероссийских показателей. Она имеет несколько относительно крупных электростанций и слабую электрическую сеть при большой ее протяженности. Около 3/4 электростанций являются тепловыми и работают на угле, причем около 85% электроэнергии производят ТЭЦ. В структуре электропотребления доля промышленности превышает 28%, транспорта составляет около 14%, населения - немногим более 26%, прочих непромышленных потребителей - 27%. [http://www.libertarium.ru/l_energy_kr_02]

2.2. Основные сведения о энергосистемах России

Одним из важнейших показателей  уровня электроэнергетики страны является развитие электрических сетей - линий  электропередачи и подстанций7 (ПС). От электростанций мощностью в несколько миллионов киловатт каждая протянулись на тысячу и более километров к промышленным центрам линии электропередачи сверхвысокого напряжения (СВН) - 500-750-1150 кВ [2].

Общая протяженность  воздушных линий электропередачи (ВЛ) напряжением 110 кВ и выше на начало 2004 г. в одноцепном исчислении составила по стране 454 тыс. км, а установленная мощность ПС - 672 млн. кВ·А, в том числе на отраслевых ПС, обеспечивающих электроснабжение тяговых ПС электрифицированных участков железных дорог, насосных и компрессорных станций нефте- и газопроводов, металлургических заводов и других потребителей электроэнергии, установлено около 100 млн.. кВ·А трансформаторной мощности[2].

Огромное электросетевое хозяйство формировалось и развивалось в соответствии с потребностью народного хозяйства страны в течение многих десятилетий. Первая ВЛ напряжением 110 кВ в России была построена в 1922 г. для передачи мощности от Каширской ГРЭС в Москву. С вводом в работу этой ВЛ было положено начало развитию электрической сети страны. Для обеспечения передачи мощности от Нижне-Свирской ГЭС в Ленинград в 1933 г. была введена в работу первая ВЛ 220 кВ. В современном понимании электрические сети начали развиваться высокими темпами только со второй половины 1950-х годов, что связано с завершением работ по восстановлению народного хозяйства после Великой Отечественной войны, устойчивым характером роста спроса на электроэнергию, развитием генерирующего комплекса электроэнергетики и формированием энергосистем.

В 1956 г. вошла в эксплуатацию первая ВЛ 400 кВ Куйбышевская ГЭС - Москва. С переводом первых электропередач 400 кВ на 500 кВ (1959 г.) был поставлен вопрос о введении промежуточного напряжения между 500 и 220 кВ. Таким напряжением явилось 330 кВ, а первая электропередача этого класса напряжения Прибалтийская ГРЭС – ‌Рига была введена в работу в 1959 г.

При практической реализации рекомендаций по введению в действующую  систему Напряжений 110–220–500 кВ промежуточного напряжения – 330 кВ – в электрических  сетях нашей страны стали параллельно  развиваться две системы напряжений: 110–220–500 – 1150 кВ и 110–330–750 кВ.

В электрических сетях  большинства энергосистем России принята  шкала напряжений 110–220–500–1150 кВ. В  ОЭС Северо-запада и частично в  ОЭС Центра используется шкала 110–330–750 кВ. В ОЭС Центра сети 330 и 750 кВ, а  в ОЭС Северного Кавказа сети напряжением 330 кВ получили определенное распространение и в перспективе намечены к дальнейшему развитию, как правило, в пределах районов их существующего использования.

Граница использования  указанных систем напряжений в ЕЭС  России в течение последних 15 лет постепенно смещалась в восточном направлении. Указанное является следствием использования напряжений 750 и 330 кВ для выдачи мощности Калининской, Смоленской и Курской АЭС, расположенных в зоне стыка двух систем напряжений. Если на начало 1980 г. восточная граница распространения сетей 750 кВ лежала на линии Ленинград – Калинин – Брянск - Курск, то к концу 2000 г. линия разграничения систем напряжений проходила через Санкт-Петербург – Владимир - Михайлов – Курск, т. е. на 200–250 км восточнее.

Характерной особенностью отмеченного смещения сетей 750 кВ в  восточном направлении является использование этого напряжения для выдачи мощности указанных выше АЭС. Как известно, одним из последствий  аварии на Чернобыльской АЭС явился отказ от строительства новых АЭС и доведения до проектной мощности Калининской, Смоленской и Курской АЭС. В связи с этим строительство ряда ВЛ от Смоленской АЭС в габаритах 750 кВ, рассчитанных на использование полной пропускной способности с вводом в работу последующих энергоблоков АЭС, было остановлено, а авансированные капиталовложения оказались «замороженными». Поэтому в перспективный период Дальнейшее развитие сетей 750 кВ и их возможное смещение в восточном направлении будет связано с продолжением строительства этих АЭС и доведением ряда действующих АЭС до проектной мощности.

Смещение сетей 330 кВ в  восточном направлении за тот  же период носит ограниченный характер, поскольку в прилегающих энергосистемах получила значительное развитие сеть напряжением 220 кВ.

Информация о работе Этапы развития электроэнергетики россии