Автор: Пользователь скрыл имя, 10 Января 2012 в 15:26, курсовая работа
Актуальность проблемы связана с многовековым развитием и проникновением математических методов в различные области человеческой деятельности, которое со временем только расширяется и углубляется. В настоящее время мы видим бурный рост числа математических приложений, связанный, прежде всего с развитием компьютерных технологий, появлением глобальной сети Internet. Те математические идеи, которые раньше не покидали области академической науки, сейчас являются привычными в обиходе программистов, прикладников, экономистов.
ВВЕДЕНИЕ………………………………………………………………………..3
1 Математическое моделирование……………………………………………….4
2 Сущность экономического анализа…………………………………………....6
3 Математические методы в экономическом анализе………………………….9
3.1 Теория массового обслуживания…………………………………………...12
3.2 Задача планирования работы предприятия………………………………..13
3.3 Задача распределения ресурсов, ценообразования и сетевого планирования………………………………………………………………………………..14
4 Этапы экономико-математического моделирования………………………..16
5 Проблемы математизации…………………………………………………….20
ЗАКЛЮЧЕНИЕ………………………………………………………………….26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ……………………………28
В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей [8, c. 365]
Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных компьютеров удается проводить многочисленные "модельные" эксперименты, изучая "поведение" модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.
Математические
методы проверки могут выявлять некорректные
построения модели и тем самым сужать
класс потенциально правильных моделей.
Неформальный анализ теоретических выводов
и численных результатов, получаемых посредством
модели, сопоставление их с имеющимися
знаниями и фактами действительности
также позволяют обнаруживать недостатки
постановки экономической задачи, сконструированной
математической модели, ее информационного
и математического обеспечения.
5 Проблемы математизации.
Проблемы, с которыми сталкиваются исследователи, применяющие математические методы, можно разделить на два типа. Первые – связанные с проблемами в самой математике, то есть когда, например, математическая модель явления построена, а ее исследование затруднено из-за того, что подходящие методы еще не разработаны, либо их разработка – нерешенная пока проблема (в математике очень много своих “внутренних” проблем). Второй тип связан с самими областями знания, которые подвергаются математизации: либо сложно построить математическую модель, либо построенная и изученная модель неправильно описывает изучаемое явление [10, c. 257]
Рассмотрим подробнее проблемы первого типа. Не стоит считать, что сами математики так уж всесильны в своей науке. Да и сама математика разрослась до таких огромных размеров, что давно уже нет таких универсальных гениев, подобных Ньютону, Эйлеру, Гильберту или Пуанкаре, которые работали почти во всех областях математики своего времени. Сегодняшняя картина математических исследований напоминает больше огромный муравейник, где каждый математик разрабатывает свою узкую область, и, порой не знает, что происходит в соседней. Но, несмотря на такую разобщенность, остаются нерешенные проблемы, важные для многих областей математики, и, потому известные всем математикам. Возможно, что для их решения необходимы знания этих многих областей, поэтому они так трудны для современных исследователей. Но, может быть, они подобно известной теореме Ферма, представляют чисто внутриматематический интерес, и их нерешаемость никак не сказывается на приложениях? К сожалению, это не так. Например, известная открытая проблема P=NP теснейшим образом связана с криптографией, генетикой, теорией управления, а решение дифференциальных уравнений Навье-Стокса осуществило бы прорыв в аэродинамике, гидродинамике. Многие современные математические модели (например, метеорологического прогноза) очень сложны и не поддаются анализу даже при помощи компьютеров: хоть и теория изучения таких уравнений разработана давно, но из-за их громоздкости применять алгоритмы теории человеку не под силу. Поэтому здесь применяют компьютеры. Но порой и компьютерам необходимо огромное время для проверки теоретических условий. Отсюда потребность в разработке быстрых алгоритмов. А, как правило, разработка таких алгоритмов связана с решением некоторых трудных, порой чисто математических проблем [6, c. 83]
В связи с этим интересно наблюдать, каким образом математики все-таки решают сложные проблемы. Анри Пуанкаре пишет: “Изучая труды великих и даже рядовых математиков, невозможно не заметить и не различить две противоположные тенденции …. Одни, прежде всего, заняты логикой; читая их работы, хочется думать, что они шли вперед лишь шаг за шагом …. Другие вверяют себя интуиции и подобно смелым кавалеристам авангарда сразу делают быстрые завоевания, впрочем, иногда не совсем надежные.” Таким образом, зачастую успех в решении крупной проблемы достигается не путём последовательных логических шагов, а некоторым интуитивно-наглядным, до конца не обоснованным рассмотрением, оставляя на будущее строгое логическое его обоснование. Интересны также мысли многих математиков относительно эстетических соображений в своей работе. Герман Вейль говорил, что в своих исследованиях, “если надо было выбирать между истиной и красотой, я выбирал красоту”. Возможно, эстетические ощущения, как ощущения скрытой истины или гармонии, помогают математикам при решении сложных задач. Это, можно сказать – одно из средств борьбы с всё усложняющейся математической действительностью [11, c. 332]
Трудность применения математических методов в данном случае, как мне кажется, связана с природой самой исследуемой области. А именно тем, что основные математические абстракции произошли от таких объектов реальности, как пространство, время, природные объекты, а не от каких-то явлений социальной действительности (к которым относится и язык). Поэтому они полезны и достаточно просто описывают физические, химические и биологические процессы, но соответствующие модели, например, языка получаются очень сложными. Можно еще добавить следующее замечание: правила языка, в отличие от законов природы довольно часто (непрерывно) меняются, поэтому математика, “отделившаяся” от природы при помощи абстракции 1000 лет назад, продолжает сохранять некоторые законы природы в себе, а если бы это “отделение” произошло от языка, который с тех пор изменился значительно, многие полезные связи разрушились бы, или усложнились [7, c. 265]
Другие проблемы второго типа связаны с тем, что построенная в соответствии с обычной методологией математическая модель может неправильно описывать процесс или вообще не иметь смысла в исследуемой области. Согласно, такие модели содержат неконструктивные элементы, что может привести к противоречиям в теории и рассогласованию с опытом даже перспективных математических аппаратов. В современной физике теория создается не так, как это было в классической физике, когда исходя из некоторой картины мира (например, независимость материальных объектов от пространства и времени у Ньютона), строилась соответствующая математическая гипотеза. Сейчас же, сначала формируется математический аппарат, а затем уже адекватная теоретическая схема, интерпретирующая этот аппарат. В отличие от онтологических принципов классической физики, которые помогали создавать или выбирать математические модели исследования, квантово-релятивистская физика сместила акценты для такого выбора в сторону гносеологических принципов (принцип соответствия, простоты, неопределенности и др.). То, что сначала вводится некоторая математическая модель, а затем интерпретируется, создает проблему с экспериментальным подтверждением теории: чтобы обосновать математическую гипотезу опытом, недостаточно просто сравнивать следствия из уравнений с опытными данными, необходимо каждый раз эксплицировать гипотетические модели, которые были введены на стадии математической экстраполяции, отделяя их от уравнений, обосновывать эти модели конструктивно, вновь сверять с созданным математическим формализмом и только после этого проверять следствия из уравнений опытом. Длинная серия математических гипотез порождает опасность накопления в теории неконструктивных элементов и утраты эмпирического смысла величин, фигурирующих в уравнениях. Поэтому в современной физике на определенном этапе развития теории становятся необходимыми промежуточные интерпретации, обеспечивающие операциональный контроль за создаваемой теоретической конструкцией. В системе таких промежуточных интерпретаций как раз и создается конструктивнообоснованная теоретическая схема, обеспечивающая адекватную семантику аппарата и его связь с опытом.
Квантовая электродинамика началась с построения формализма, позволяющего описать "микроструктуру" электромагнитных взаимодействий. Создание указанного формализма довольно отчетливо расчленяется на четыре этапа. Вначале был введен аппарат квантованного электромагнитного поля излучения (поле, не взаимодействующее с источником). Затем на втором этапе, была построена математическая теория квантованного электронно-позитронного поля (было осуществлено квантование источников поля). На третьем этапе было описано взаимодействие указанных полей в рамках теории возмущений в первом приближении. Наконец, на заключительном, четвертом этапе был создан аппарат, характеризующий взаимодействие квантованных электромагнитного и электронно-позитронного полей с учетом последующих приближений теории возмущений (этот аппарат был связан с методом перенормировок, позволяющим осуществить описание взаимодействующих полей в высших порядках теории возмущений) [3, c. 27]
В период, когда уже был пройден первый и второй этапы построения математического формализма теории и начал успешно создаваться аппарат, описывающий взаимодействие свободных квантованных полей методами теории возмущений, в самом фундаменте квантовой электродинамики были обнаружены парадоксы, которые поставили под сомнение ценность построенного математического аппарата. Это были так называемые парадоксы измеримости полей. В работах П. Иордана, В. А. Фока и особенно в совместном исследовании Л. Д. Ландау и Р. Пайерлса было показано, что основные величины, которые фигурировали в аппарате новой теории, в частности, компоненты электрической и магнитной напряженности в точке, не имеют физического смысла. Поля в точке перестают быть эмпирически оправданными объектами, как только исследователь начинает учитывать квантовые эффекты [3, c.95]
Источником парадоксов измеримости была неадекватная интерпретация построенного формализма. Такая интерпретация была неявно введена в самом процессе построения аппарата методом математической гипотезы.
Математические
гипотезы весьма часто формируют
вначале неадекватную интерпретацию
математического аппарата. Они "тянут
за собой" старые физические образы,
которые "подкладываются" под новые
уравнения, что может привести к рассогласованию
теории с опытом. Поэтому уже на промежуточных
этапах математического синтеза вводимые
уравнения должны быть подкреплены анализом
теоретических моделей и их конструктивным
обоснованием.
ЗАКЛЮЧЕНИЕ
Сформулируем основные идеи, к которым мы пришли в результате проделанной работы. Итак, в процессе математизации наук в основном используются три метода: математическое моделирование, формализация и аксиоматизация.
Моделирование
представляет собой некоторое отображение
явления объективной реальности
в структуры и множества
Формализация
– процесс “кодирования”
Аксиоматизация предполагает выявление простейших понятий и аксиом области исследования, из которых посредством логических правил получаются все теоремы (истинные утверждения) данной теории. Этот метод позволяет охватывать всю изучаемую область с помощью относительно небольшого списка аксиом.
Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования (сложно построить модель из-за размытости границ явления) и c интерпретацией модели (построенная модель неправильно описывает явление).
Возможности
математизации ограничиваются, скорее
всего, сложностью исследуемых явлений.
Поэтому, как я думаю, если формулировка
проблемы разумна (то есть если не пытаться
математизировать эстетику, например),
то рано или поздно можно будет применить
математику для ее решения.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Информация о работе Этапы экономико-математического моделирования