Эффективность модернизации системы электроснабжения

Автор: Пользователь скрыл имя, 10 Мая 2012 в 20:21, курсовая работа

Описание работы

Целью данной курсовой работы является технико-экономическое обоснование модернизации системы электроснабжения (на примере ПС 110/35/10 кВ «Алексеевское» Чамзинского района).
Задачи курсовой работы :
1. Рассмотреть значение топливно-энергетических ресурсов для развития народного хозяйства.
2. Рассмотреть сущность и показатели экономической эффективности системы электроснабжения.
3. Показать организационно-экономическую характеристику предприятия.
4. Определить состояние системы электроснабжения на предприятии.
5. Выявить основные направления экономии и рационального использования топливно-энергетических ресурсов.
6. Привести экономическую оценку эффективности предложенных мероприятий по совершенствованию электроснабжения.

Содержание

Введение…………………………………………………………………………….5
1 Теоретические аспекты экономической эффективности системы электроснабжения…………………………………………………………………..7
1.1 Значение топливно-энергетических ресурсов для развития народного хозяйства……………………………………………………………………………7
1.2 Сущность и показатели экономической эффективности электроснабжения…………………………………………………………………13
2 Современное состояние системы электроснабжения………………………...17
2.1 Организационно-экономическая характеристика предприятия…………...17
2.2 Состояние системы электроснабжения на предприятии…………………...17
3 Повышение экономической эффективности системы электроснабжения….13
3.1 Основные направления экономии и рационального использования электроэнергии……………………………………………………………………19
3.2 Экономическая оценка эффективности предложенных мероприятий по модернизации ПС 110/35/10 кВ «Алексеевское»………………………………25
Заключение………………………………………………………………………...32
Список использованных источников…………………………………………….33

Работа содержит 1 файл

123456.docx

— 129.26 Кб (Скачать)

     В связи с развитием электроэнергетики  в Мордовии ввели в эксплуатацию множество электростанций и тогда  же, 20 сентября 1955 г., заработала Алексеевская ТЭЦ. В 1959-м Алексеевскую ТЭЦ-3 соединяют с Саранскими ТЭЦ-1 и ТЭЦ-2 линией напряжением 35 кВ, которую строили с расчетом на напряжение 110 кВт. В августе 1958г. в целях комплексного развития электрической энергетики республики создан Мордовский энергетический комбинат. В него так же вошла Алексеевская с энергопоездом №321. В 1960г. Мордовская энергосистема была присоединена к Единой энергосистеме европейской части Советского Союза. Алексеевская ТЭЦ через Атяшево и г.Ардатов была присоединена в г.Алатырь с Чувашской энергосистемой. В 1961-63гг. Алексеевская электрическая станция была переведена на газовое топливо.

     В настоящее время Алексеевская ПС является одним из производственных отделений филиала ОАО «МРСК-Волги» - «Мордовэнерго». Для повышения эффективности производства и обеспечение подстанций более квалифицированными специалистами, «Мордовэнерго» отбирает выпускников школ и направляет на учебу в Казанский государственный энергетический университет, обеспечивая их бесплатной учебой, жильем и стипендией. После окончания предоставляют им работу на подстанциях производственных отделений «Мордовэнерго». 

     2.2 Состояние системы электроснабжения на предприятии 

     Подстанция 110/35/10 кВ «Алексеевское» в настоящее  время имеет в наличии энергетическое оборудование, которое представлено в таблице 1.

Таблица 1 – Энергетическое оборудование ПС 110/35/10

     
№ п/п Наименование  оборудования Ед. изм. Кол-во
1 Трансформатор ТДТН-16000/110-80У шт. 2
2 Блок статической  компенсации КЭС-1-1,0563 шт. 72×3
3 Выключатель ММО-110/1250-20У1 шт. 10
4 Выключатель ВКЭМ-10-20/630 шт. 21
5 Выключатель ВМВН-35/630У1 шт. 1

 

     Основное  энергетическое оборудование на подстанции устарело морально и физически. В 2012 году «Мордовэнерго» планирует полную реконструкцию ПС 110/35/10 кВ «Алексеевское».

     ПС 110/35/10 кВ «Алексеевское» питается линией напряжением 110 кВ от ПС 220/110/10 «Комсомольское»  Чамзинского района. В свою очередь  ПС «Алексеевское» питает ПС «Апраксино»  линией 35 кВ, ПС «Медаево» линией 110 кВ, ПС «Сайгуши» линией 110 кВ, так же питает п.Комсомольский – линией 10 кВ и ОАО «Лато» линией 10 кВ. В 2006 г. от ПС «Алексеевское» питался ОАО «Мордовцемент» двумя линиями по 35 кВ, но в связи с постройкой своей подстанции, прекратили потребление электроэнергии от ПС «Алексевское». 
 
 
 
 
 

     3 Повышение экономической  эффективности системы электроснабжения

     3.1 Основные направления  экономии и рационального  использования   электроэнергии 

     Одним из основных направлений экономии и  рационального использования электроэнергии является надежность. Проблема  надежности  электрических  станций,  подстанций,  линий электропередачи,  электрических  сетей  и  систем –  одна  из первоочередных  проблем  энергетики.  В  отдельных  энергетических системах число аварий в течение года достигает нескольких десятков, а  годовой  недоотпуск  электроэнергии  в  результате  аварий – нескольких  миллиардов  киловатт-часов.  Суммарная  мощность одновременно  простаивающих  в  аварийном  ремонте  генераторов составляет десятки миллионов киловатт. Возможные последствия от ненадежности  становятся  такими  существенными,  что  требуется постоянное  совершенствование  методов  прогнозирования  развития, проектирования,  строительства,  монтажа  и  эксплуатации электроэнергетических  систем,  позволяющих  полнее  учитывать надежность  и  наиболее  экономно  расходовать  выделяемые  на  её обеспечение средства.

     Одними  из немалых проблем ненадежности являются:

     - моральный износ;

     - физический износ;

     - потери электроэнергии.

     К примеру, масленые выключатели высокого напряжения, которые морально устарели можно заменить на элегазовые, более  современные и экологичные, что  приведет к более надежному и  бесперебойному электроснабжению.

     Выключатели высокого напряжения (ВК) предназначены  для оперативных и аварийной  коммутаций в энергосистемах, для  выполнения операций включения и  отключения отдельных цепей при  ручном или автоматическом управлении. Во включенном положении ВК должен длительно пропускать токи нагрузки и кратковременно-аварийные.

     Характер  режима работы высоковольтных выключателей несколько необычен: нормальным для них считается как включенное положение, когда по ним проходит ток нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи.

     Коммутация  цепи, осуществляемая при переключении ВК из одного положения в другое, производится не регулярно, время от времени, а выполнение специфических требований по включению цепи при имеющемся в ней короткого замыкания (КЗ) либо по отключению КЗ вообще крайне редко.

     Выключатели должны надёжно выполнять свои функции, находясь в любом из указанных положений, и одновременно быть всегда готовыми к мгновенному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Наиболее тяжёлым режимом для ВК является режим отключения тока КЗ.

     Общие требования к конструкциям и характеристикам  выключателей устанавливается стандартами: ГОСТ 687-78 «Выключатели переменного тока нагрузки на напряжение свыше 1000 В. Общие технические условия»; ГОСТ 18397—73 «Выключатели переменного тока на номинальное напряжение 6-220 кВ. Общие технические условия»; ГОСТ 12450-82 «Выключатели переменного тока высокого напряжения. Отключение ненагруженных линий». ГОСТ 8024-84 «Допустимые температуры нагрева токоведущих элементов, контактных соединений и контактов аппаратов и электротехнических устройств переменного тока на напряжение свыше 1000 В; ГОСТ 1516.1-75 «Нормы испытательных напряжений внешней и внутренней изоляции электрических аппаратов».

     В связи с тем, что российская промышленность поставляет высоковольтные электрические  аппараты для районов с различными климатическими условиями, объединение сетей и создание единой энергетической системы связано с повышением технических параметров и ужесточением требований, предъявляемых к электрическим аппаратам высокого напряжения. Эти задачи становятся трудноразрешимыми при использовании традиционных методов гашения дуги, изоляционных и дугогасительных сред. Широко применяемые в настоящее время масляные и воздушные ВК имеют и свои преимущества, и свои недостатки. Они объясняются свойствами сред, используемых в этих аппаратах для изоляции и гашения дуги. Масло таит опасность пожара и взрыва. Применение воздушных выключателей связано с необходимостью производства, кондиционирования и хранения сжатого воздуха. Затруднительна эксплуатация воздушных и масляных ВК при низких температурах. Естественно поэтому, что исследователи непрерывно ведут поиски новых принципов коммутации цепей и новых сред, которые сохраняли бы преимущества традиционных сред, но не имели бы их недостатков. С основных характеристик подобной среды и начинается первая глава.

     Наиболее  распространёнными изоляционными, дугогасительными 
и охлаждающими средами, которые применяются в электротехническом оборудовании, является минеральное масло и воздух. Газы по сравнению с маслом и твёрдыми изоляционными материалами имеют определённые преимущества, главные из которых - ничтожнейшая проводимость и практическое отсутствие диэлектрических потерь, независимость в однородном поле электрической прочности от частоты, неповреждённость газовой изоляции заметным остаточным изменениям и малая загрязнённость под действием дуги и короны.

     Электрическая прочность газовой изоляции в  однородных или слабо неоднородных полях увеличивается с ростом давления и при определённых условиях может превысить электрическую прочность трансформаторного масла, фарфора и высокого вакуума.

     Для упрощения конструкций оборудования с газовой изоляцией желательно, чтобы необходимая электрическая  прочность была обеспечена при сравнительно небольшом избыточном давлении.

     Однако  при применении газа в электротехническом оборудовании, помимо изоляционных, необходимо учитывать и другие свойства газов, а именно: сам газ и продукты его разложения не должны быть токсичными; газ должен быть химически нейтрален по отношению к применённым в устройстве материалам; газ должен иметь низкую температуру сжижения, чтобы его можно было использовать при повышенных давлениях и требуемых по условиям эксплуатации температурах; газ должен обладать хорошей теплоотводящей способностью; диссоциация газа должна быть незначительной; газ должен быть пожаро- и взрывобезопасным; газ должен быть легкодоступным и недорогим.

     При использовании газа в коммутационных аппаратах необходимо, кроме того, чтобы газ обладал хорошей дугогасительной способностью. С точки зрения доступности воздух имеет неоспоримое преимущество по сравнению со всеми другими газами, однако по совокупности требований он не всегда приемлем, некоторые газы и пары обладают значительно более высокой электрической прочностью, чем воздух. Однако лишь некоторые из них удовлетворяют требованиям, предъявляемым к электрической изоляции. Так, многие вещества в обычных условиях находятся в жидком состоянии, как, например, ССЦ, имеющее в газообразном состоянии электрическую Прочность, в 6,3 раза большую, чем воздух. Многим веществам, кроме того, свойственно более или менее интенсивное разложение в условиях электрического разряда. Наконец, некоторые вещества при разложении выделяют свободный углерод, который, оседая на поверхности твёрдых изоляционных элементов конструкции, делает их проводящими.

     Единственным  газом, наиболее полно удовлетворяющим  поставленным требованиям, является элегаз. Чистый газообразный элегаз совершенно безвреден, химически не активен, поэтому в обычных эксплуатационных условиях он не действует ни на какие материалы, применяемые в аппаратостроении, обладает повышенной теплоотводящей способностью и является очень хорошей дугогасительной средой, позволяющей производить отключение очень больших токов при больших скоростях восстановления напряжения. В однородном поле электрическая прочность элегаза в 2,3-2,5 раза выше прочности воздуха.

     Низкие  температуры сжижения и сублимации дают возможность при обычных условиях эксплуатировать элегазовые аппараты без специального подогрева. Элегаз не горит и не поддерживает горения, следовательно, элегазовые аппараты являются взрыво - и пожаро безопасными.

     Стоимость элегаза существенно зависит  от объёма его производства. При  большом его потреблении стоимость  единицы объёма элегаза, имеющего такую плотность, при которой достигается равная с маслом электрическая прочность, незначительно будет отличаться от стоимости единицы объёма масла. Но при правильной эксплуатации элегаз не стареет и не требует поэтому такого тщательного ухода за собой, как масло.

     Элегаз  представляет собой соединение, имеющее  химическую формулу 8Р6- При нормальных условиях это бесцветный, не имеющий запаха газ, плотность которого 6,52 кг/м при нормальном атмосферном давлении и температуре 0°С. Он приблизительно в пять раз тяжелее воздуха. Молекулярная масса элегаза 146,06. В нём содержится 21,95% серы и 78,05% фтора.

     Одним из необходимых условий возможности  использования того или иного соединения в электрических аппаратах является его химическая инертность. Оно не должно вступать в реакцию ни с каким материалом, применяемым в электро-аппаратостроении. Чистый элегаз при обычных условиях удовлетворяет этому требованию, несмотря на то, что в состав его молекулы входит фтор, являющийся одним из наиболее активных химических элементов. По химической инертности чистый элегаз при нормальных условиях сравним с азотом или даже инертными газами. Строение молекулы и её энергетическое состояние определяют высокую стабильность элегаза.

     Молекула  элегаза содержит шесть атомов фтора, расположенных в вершинах правильного ядра, и атом серы, который находится в центре молекулы на равных расстояниях от атомов фтора. При таком геометрическом расположении атомов в молекуле обеспечивается максимальное перекрытие электронного облака серы и фтора и понижается общая энергия молекулы. Радиус атома серы лишь на 20% больше радиуса атома фтора. При этом соотношении радиусов атомы фтора плотно облегают центральный атом серы, обеспечивая идеальную его защиту от внешних воздействий. В возбуждённом состоянии атом серы может образовывать шесть ковалентных связей. При атмосферном давлении элегаз, как и углекислый газ, может находиться только в газообразном состоянии. При Раб = 105 Па температура перехода из твёрдого состояния в газообразное (температура возгонки) равна - 63,8°С. При давлении свыше раб =2,28'10 Па элегаз в зависимости от температуры может находиться во всех трёх агрегатных состояниях. При этом давлении температура тройной точки равна -50,8°С.

Информация о работе Эффективность модернизации системы электроснабжения