Демографические модели и демографический прогноз

Автор: Пользователь скрыл имя, 13 Декабря 2012 в 15:37, реферат

Описание работы

Цель курсовой работы: раскрыть сущность демографических моделей и демографических прогнозов.
Для достижения вышеуказанной цели были определены следующие задачи: рассмотреть категорию демографические модели, а именно структуру и виды; раскрыть сущность демографических прогнозов, остановившись подробнее на их значении для медико-социальной ситуации в стране.
При выполнении работы был изучен ряд научной литературы, такой как «Основы демографии» под редакцией Боярского А.Я., Валентей Д.И., Кваша А.Я., «Судьба семьи в России XXI века» под редакцией Антонова А.И. и др., а также статьи таких журналов как «Коммерсант» и др.

Работа содержит 1 файл

10 Демографические модели и демографический прогноз.doc

— 257.95 Кб (Скачать)

 


Введение

 

В нынешнее время, важное значение стали приобретать такие категории как демографические модели и демографические прогнозы.

Современный этап развития демографической модели характерен все большим уточнением и усложнением традиционных моделей, освоение демографических моделей новых типов, внедрением в практику демографического моделирования ЭВМ, что дало возможность исключить вопрос о сложности вычислений из ряда критериев приемлемости демографических моделей. Прогресс в этой отрасли идёт в направлении дальнейшего сближения моделей с реально протекающими демографическими процессами за счёт увеличения числа демографических характеристик личности, учитываемых моделью, и отказа от искусств и предположений.

В данный момент очень трудно найти какую-либо область экономики и социальной жизни, где бы при долгосрочном планировании не использовались данные демографических прогнозов. Демографические прогнозы дают возможность не просто ограничиться определением будущих характеристик населения. Давая сравнение полученным в результате перспективных исчислений величинам и тем параметрам демографических процессов, например, численности и возрастно-полового состава населения в каком-либо регионе, которые желательно с социально-экономических позиций для общества в перспективе, можно определить степень расхождения желаемых и возможных характеристик демографических процессов.

Демографические прогнозы и демографические модели являются основополагающими элементами в управлении общественными процессами. Они дают возможность целенаправленно воздействовать на развитие социально-экономических явлений, изменять их в необходимую для страны сторону.

Таким образом, актуальность данной работы заключается в важности вышеуказанных категорий для регулирования демографических процессов.

Цель курсовой работы: раскрыть сущность демографических моделей и демографических прогнозов.

Для достижения вышеуказанной цели были определены следующие задачи: рассмотреть категорию демографические модели, а именно структуру и виды; раскрыть сущность демографических прогнозов, остановившись подробнее на их значении для медико-социальной ситуации в стране.

При выполнении работы был изучен ряд научной литературы, такой как «Основы демографии» под редакцией Боярского А.Я., Валентей Д.И., Кваша А.Я., «Судьба семьи в России XXI века» под редакцией Антонова А.И. и др., а также статьи таких журналов как «Коммерсант» и др.

 

 

Глава 1. Демографические модели

 

1.1 Понятие и структура демографических моделей

 

Демографические модели используются для описания (как правило, с помощью математических методов) состояния населения и его изменений, отдельных элементов репродуктивности населения или процесса этого воспроизводства в целом. Понятие демографические модели начал широко использоваться в научной литературе с 40-х гг. 20 в. Множество демографических моделей не претендует на описание моделируемого явления или процесса во всём многообразии его черт и особенностей. В частности, множество демографических моделей учитывают только некоторые социально-экономические и демографические характеристики. Так, большая группа наиболее распространённых демографических моделей - модели воспроизводства населения рассматривает дифференциацию населения только по полу и возрасту. Для построения и использования демографических моделей необходимо абстрагироваться от целого ряда характерных признаков, черт и свойств объекта моделирования, которые либо бывают несущественными, либо рассматриваются как несущественные, с точки зрения решаемых демографической моделей задач. Поэтому, в основе демографических моделей стоит формализация объекта моделирования, в которой определяется набор учитываемых демографических моделей количественных и качественных характеристик моделируемого процесса,  а также среды, в которой они протекают.

Любая демографическая модель определяется набором эндогенных и экзогенных переменных модели и системой соотношений между этими переменными. Эндогенные переменные содержатся в самой демографической модели, к их числу относят такие демографические переменные, как численность населения, число демографических событий, их интенсивность, темпы изменения и т. д. Экзогенные переменные определяются вне модели, по своему характеру могут быть как демографическими, так и недемографичeскими (биологическими, социально-психологическими, экономическими и т. п.). Наряду с чисто демографическими с 1970-х гг. большую известность получили демоэкономические модели с экономическими эндогенными переменными, которые устанавливают взаимосвязь роста населения и экономического развития. В число экзогенных переменных моделей демографических процессов обязательно входит время. Специфика демографических процессов определяет то, что практически во всех демографических моделях в качестве экзогенной переменной выступает длительность пребывания в конкретном демографическом состоянии, чаще всего возраст, эндогенные переменные определяются как функции длительности состояния или возраста - функции демометрические.

В соответствие с типом модели система соотношений между её переменными может определяться в виде математических формул, уравнений или их систем, числовых таблиц или правил, по которым одни переменные вычисляются на основе других1.

Всем демографическим моделям соответствуют твёрдо установленные правила определения экзогенных переменных модели (на основе данных статистики населения и другой информации) и правила интерпретации эндогенных переменных модели, т.е. трактовки их значений как характеристик реально протекающих демографических процессов. С каждой конкретной демографической моделью связаны ограничения, которые определяют сферу использования демографической модели, гипотезы, положенные в основу модели, и соглашения, принятые при её построении. Представление указанных ограничений и гипотез особенно важно при использовании демографической модели в демографическом анализе. Гипотезы содержат предположения об особенностях объекта моделирования и следуют из конкретного демографического анализа;

Демографическая модель зарождается как абстрактная математическая модель, относящаяся к любому из населений, удовлетворяющих принятым ограничениям. Придав переменным модели конкретные числовые или качественные значения, соответствующие определенному населению на некотором этапе его развития, получают модель конкретного населения. Важное обобщение моделей конкретных населений представляют типовые модели, значения переменных которых отражают закономерности не какого - либо определенного населения, а любого населения, либо населения с некоторыми твёрдоустановленными свойствами. Примером типовых моделей являются типовые таблицы смертности.

 

1.2 Виды демографических моделей

 

Выявляют такие демографические макромодели, которые описывают демографические процессы на уровне всего населения или отдельных его частей, и микромодели, которые отражают демографические процессы на уровне индивида или семьи, через последовательность демографических событий в его жизни или в жизни других демографических единиц (брачная пара, семья и т. д.).

В первом случае состояние модели описывается распределением индивидов в соответствии с заданным набором демографических признаков, поэтому модели этого класса иногда наз. моделями распределений. Во втором случае состояние модели характеризуется демографическим состоянием индивида, в силу этого такие модели называются иногда моделями состояний (или положений). Реальное воплощение микромоделей связано с применением ЭВМ и имитационным моделированием. Область применения микромоделей - анализ факторов демографических явлений.

В зависимости от того, учитывает или нет демографическая модель возможное отклонение частот демографических событий от их вероятностей, демографические модели делятся на стохастические (вероятностные) и детерминистские. Детерминистский подход традиционен для демографии, где понятие вероятности имеет не общий математико-статистический смысл, а отождествляется с частотой демографических событий. На самом деле, при любом определении понятия вероятность, частота не только не тождественна ей, но отличается от неё случайным образом. Сложность построения стохастических моделей связана с тем, что большинство демографических совокупностей не представляет собой однородных в статистическом смысле совокупностей, а вопрос о характере распределения частот демографических событий при данной вероятности изучен весьма слабо. Все микромодели являются стохастическими, макромодели - детерминистскими2.

Демографические модели, в которых время и возраст входят как непрерывные переменные, называются непрерывными. Демографические модели, в которых они приняты изменяющимися с определенным шагом, называются дискретными. Если этот шаг принять за единицу, то время и возраст будут принимать только целые значения. Все известные микромодели - дискретны. Среди макромоделей равным образом распространены и непрерывные и дискретные, область применения первых связана в основном с качественным анализом количественных закономерностей демографических процессов. Дискретные макромодели применяются как в анализе, так и в различных расчётах. Аналитическая ценность непрерывных моделей во многом связана с предположением, что большинство переменных такой модели суть непрерывные или дифференцируемые функции времени (возраста). Такое соглашение не всегда соответствует действительности, т. к. численность населения или число демографических событий есть целое число, а функция, описывающая их изменение во времени, не является непрерывной. Практика демографических исследований свидетельствует о том, что указанное выше противоречие не препятствует успешному применению непрерывных моделей в анализе.

Центральным элементом всякой демографической модели является система соотношений между экзогенными и эндогенными её переменными. Весьма важной, но мало разработанной, представляется классификация моделей с точки зрения генезиса этой системы соотношений. Первый и наиболее распространённый тип составляют демографические модели, в которых система соотношений между переменными непосредственно и однозначно вытекает из смысла переменных модели, представляет собой результат анализа объекта моделирования по существу. Такая система соотношений между переменными носит априорный характер - его нарушение скорее свидетельствует о статистических или счётных ошибках, чем ставит под сомнение истинность модели. К этому типу относятся различные модели, лежащие в основе таблиц демографических, модели воспроизводства населения и др.

Ко второму типу относятся модели, в которых система соотношений между переменными отражает некоторую содержательную гипотезу о характере протекания демографических процессов и т. п. Система соотношений между переменными здесь также вытекает из анализа объекта моделирования по существу, но сходство или различие эндогенных переменных модели и соответствующих эмпирических характеристик объекта моделирования представляет собой тот критерий, на основе которого данная демографическая принимается либо отвергается. Лежащая в основе модели гипотеза может носить как чисто демографический, так и иной (социально-психологический и др.) характер. Формула Гомперца - Мейкема представляет собой наиболее удачный и широко известный пример моделей такого типа.

В основе моделей третьего типа лежит аналогия между моделируемым демографическим процессом и каким-либо иным процессом, количественные закономерности существования которого изучены. Отличие этих моделей от демографических моделей второго типа в том, что гипотеза - аналогия, как правило, не раскрывает механизма процесса. Вместе с тем рассуждения по аналогии содержат в себе значительную опасность. Известны, например, ошибочные попытки приписать населению закономерности роста, характерные для биологических популяций3.

Система соотношений между переменными в моделях четвёртого типа носит чисто количественный характер. Она представляет собой либо аналитические выражения, либо числовые таблицы, полученные на основе эмпирического материала, и отражает количеств. закономерности, общие для групп населения, сведения о которых были использованы при построении модели. Подобные системы соотношений выявляются либо эвристически, либо с помощью некоторых математико-статистических методов (регрессии, корреляции, факторного анализа и др.). В основе применения таких демографических моделей лежит предположение, что выявленные связи между переменными модели характерны для всех населений, удовлетворяющих ограничениям данной демографической модели. Лишь в редких случаях удаётся содержательно интерпретировать полученные количественные связи так, чтобы эта интерпретация выглядела достаточно убедительной. Правомерность применения таких демографических моделей зависит от того, сколь тщательно и широко проведена проверка выявленных связей. Однако всегда остаётся опасность, что область, где допустимо применение данной демографической модели уже, чем это предполагалось. Примером демографической модели такого типа могут служить различные типовые демографические таблицы и аналогичные им построения, из которых наиболее известны вышеупомянутые типовые таблицы смертности. Среди неудачных попыток применения демографических моделей четвёртого типа можно отметить многочисленные попытки найти аналитическое выражение для возрастной функции рождаемости. Приведённые четыре типа демографические модели не исчерпывают всего их многообразия, существуют и другие модели, занимающие промежуточное положение.

Одним из основных видов современных демографических моделей являются дискретные, детерминистские макромодели одного или группы демографических процессов, лежащие в основе различных демографических таблиц, т. е. таблиц взаимозависимых значений. Демографические таблицы строятся как таблицы чисел демографических событий (рождений, браков, смертей, разводов и пр.) и чисел индивидов, находящихся в данном демографическом состоянии и относящихся к некоторой когорте. Исходная численность когорты (корень таблицы) принимается равной некоторой удобной для расчётов постоянной величине, выбираемой произвольно. Кроме того, в таблицы входят показатели интенсивности демографических событий, которые соответствуют интенсивностям, наблюдаемым в некотором реальном населении, а также различные средние и обобщающие характеристики. Состав входящих в таблицу функций и правила, описывающие связь между ними, вытекают из демографических моделей рассматриваемого процесса. Лежащие в основе демографических таблиц показатели интенсивности демографических событий (т. н. исходные показатели таблицы) относятся к числу экзогенных переменных демографический модели. Другой обязательной экзогенной переменной модели является возраст или иная временная переменная, измеряющая период, прошедший с момента образования данной когорты (длительность брака, время с момента рождения предыдущего ребёнка и т. п.). Исходные интенсивности демографических событий могут относиться как к реальной когорте, т. е. к совокупности людей, одновременно вступивших в некоторое демографическое состояние, так и к разным когортам, живущим одновременно в некотором населении. Во втором случае рассматривается некая условная когорта, в которой возрастные интенсивности демографических процессов такие же, как и в разных возрастных группах реального населения в течение некоторого календарного периода. Такая условная когорта называется в демографической литературе гипотетическим поколением.

Информация о работе Демографические модели и демографический прогноз