Возобновляемые источники энергии

Автор: Пользователь скрыл имя, 11 Мая 2013 в 15:00, доклад

Описание работы

Возобновляемая или регенеративная энергия ("Зеленая энергия") — энергия из источников, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения.
Возобновляемую энергию получают из природных ресурсов — таких как солнечный свет, ветер, дождь, приливы и геотермальная теплота — которые являются возобновляемыми (пополняются естественным путем).

Работа содержит 1 файл

Документ Microsoft Word.docx

— 83.82 Кб (Скачать)

Доклад. ВИЭ.

Возобновляемая или регенеративная энергия ("Зеленая энергия") — энергия из источников, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения.

Возобновляемую энергию получают из природных ресурсов — таких как солнечный свет, ветер, дождь, приливы и геотермальная теплота — которые являются возобновляемыми (пополняются естественным путем). В 2006 году около 18 % мирового потребления энергии было удовлетворено из возобновляемых источников энергии, причем 13 % из традиционной биомассы, таких, как сжигание древесины.[1] Гидроэлектроэнергия является очередным крупнейшим источником возобновляемой энергии, обеспечивая 3,3 % мирового потребления энергии и 15,3 % мировой генерации электроэнергии в 2010 году. В 2010 году 16,7% мирового потребления энергии поступало из возобновляемых источников. Доля возобновляемой энергии уменьшается, но это происходит за счёт сокращения доли традиционной биомассы, которая составила всего 8,5% в 2010 году. Доля современной возобновляемой энергии растёт и в 2010 году составила 8,2%, в том числе гидроэнергия 3,3%, для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%.[2] Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 196600 мегаватт (МВт) в 2010 году,[3] и широко используется в странах Европы и США.[4] Ежегодное производство в фотоэлектрической промышленности достигло 6900 МВт в 2008 году[5]. Солнечные электростанции популярны в Германии и Испании.[6] Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт.[7] Крупнейшей в мире геотермальной установкой, является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт. Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 процентов потребности страны в автомобильном топливе [8]. Топливный этанол также широко распространен в США.

Энергия ветра

Основная статья: Ветроэнергетика

Это отрасль энергетики, специализирующаяся на преобразовании кинетической энергии  воздушных масс в атмосфере в  электрическую,тепловую и любую другую форму энергии для использования в народном хозяйстве. Преобразование происходит с помощью ветрогенератора (для получения электричества),ветряных мельниц (для получения механической энергии) и многих других видов агрегатов. Энергия ветра является следствием деятельности солнца, поэтому она относится к возобновляемым видам энергии.

Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Наиболее перспективными местами  для производства энергии из ветра  считаются прибрежные зоны. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Ветряные генераторы практически  не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

В перспективе планируется использование  энергии ветра не посредством ветрогенераторов, а более нетрадиционным образом. В городе Масдар (ОАЭ) планируется строительство электростанции работающей на пьезоэффекте. Она будет представлять собой лес из полимерных стволов покрытых пьезоэлектрическими пластинами. Эти 55-метровые стволы будут изгибаться под действием ветра и генерировать ток.

[править]Гидроэнергия

Основная статья: Гидроэнергетика

На этих электростанциях, в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободно поточных (бесплотинных) ГЭС.

Особенности:

  • Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций
  • Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии
  • Возобновляемый источник энергии
  • Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций
  • Строительство ГЭС обычно более капиталоёмкое
  • Часто эффективные ГЭС более удалены от потребителей
  • Водохранилища часто занимают значительные территории
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Типы ГЭС:

  • Плотинные
  • Бесплотинные
  • Малые
  • Гидроаккумулирующие
  • Приливные
  • На океанских течениях
  • Волновые
  • Осмотические

На 2010 год гидроэнергетика обеспечивает производство до 76 % возобновимой и до 16 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 1015 ГВт. Лидерами по выработке гидроэнергии на гражданина являются Норвегия, Исландия иКанада. Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

[править]Энергия приливов и отливов

Основная статья: Приливная электростанция

Электростанциями этого типа являются особым видом гидроэлектростанции, использующим энергию приливов, а  фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки  изменяют уровень воды.

Для получения энергии залив  или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в  режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище  для последующей работы в отсутствие приливов и отливов). В последнем  случае они называются гидроакумулирующая электростанция.

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

[править]Энергия волн

Основная статья: Энергия волн

Волновые  электростанции используют потенциальную энергию волн переносимую на поверхности океана. Мощность волнения оценивается в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает большей удельной мощностью. Несмотря на схожую природу с энергией приливов, отливов и океанских течений волновая энергия представляет собой отличный от них источник возобновляемой энергии.

[править]Энергия солнечного света

Основная статья: Солнечная энергетика

Данный вид энергетики основывается на преобразовании электромагнитного солнечного излучения в электрическую или тепловую энергию.

Солнечные электростанции используют энергию Солнца как напрямую (фотоэлектрические СЭС работающие на явлении внутреннего фотоэффекта), так и косвенно - используя кинетическую энергию пара.

К СЭС косвенного действия относятся:

  • Башенные — концентрирующие солнечный свет гелиостатами на центральной башне наполненной солевым раствором.
  • Модульные — на этих СЭС теплоноситель, как правило масло, подводится к приемнику в фокусе каждого параболо-цилиндрического зеркального концентратора и затем передает тепло воде испаряя её.

Схема солнечного пруда: 
1 — слой пресной воды; 2 — градиентный слой; 
3 — слой крутого рассола; 4 — теплообменник.

  • Солнечные пруды[9] — представляют собой небольшой бассейн глубиной в несколько метров имеющий многослойную структуру. Верхний — конвективный слой — пресная вода; ниже расположен градиентный слой с увеличивающейся книзу концентрацией рассола; в самом низу слой крутого рассола. Дно и стенки покрыты чёрным материалом для поглощения тепла. Нагрев происходит в нижнем слое, так как рассол имеет более высокую по сравнению с водой плотность увеличивающуюся при нагреве из-за лучшей растворимости соли в горячей воде, конвективного перемешивания слоёв не происходит и рассол может нагреваться до 100°C и более. В рассольную среду помещён трубчатый теплообменник по которому циркулирует легкокипящая жидкость (аммиак, фреон и др.) и испаряетсяпри нагреве передавая кинетическую энергию паровой турбине.

Крупнейшая электростанция подобного  типа находится в Израиле, её мощность 5 Мвт, площадь пруда 250 000 м2, глубина 3 м.

[править]Геотермальная энергия

Основная статья: Геотермическая энергия

Электростанции данного типа представляют собой теплоэлектростанции использующие в качестве теплоносителя воду из горячих геотермальных источников. В связи с отсутствием необходимости нагрева воды ГеоТЭС являются в значительной степени более экологически чистыми нежели ТЭС. Строятся ГеоТЭС в вулканических районах, где на относительно небольших глубинах вода перегревается выше температуры кипения и просачивается к поверхности, иногда проявляясь в виде гейзеров. Доступ к подземным источникам осуществляется бурением скважин.

[править]Биоэнергетика

Основная статья: Биоэнергетика (электроэнергетика)

Дополнительные сведения: Биотопливо и Биодизель

Данная отрасль энергетики специализируется на производстве энергии из биотоплива. Применяется в производстве как электрической энергии, так и тепловой.

[править]Биотопливо первого поколения

Биото́пливо — топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различают:

  • твёрдое биотопливо (лес энергетический: дрова, брикеты, топливные гранулы, щепа, солома, лузга), торф;
  • жидкое биотопливо (для двигателей внутреннего сгорания, например, биоэтанол, биометанол, биобутанол, диметиловый эфир, биодизель);
  • газообразное (биогаз, биоводород, метан).

[править]Биотопливо второго поколения

 

Завод пиролиза биомассы, Австрия

Биотопливо второго поколения — разнообразные виды топлива, получаемые различными методами пиролиза биомассы, или прочие виды топлива, помимо метанола, этанола, биодизеля получаемые из источников сырья «второго поколения». Быстрый пиролиз позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций.

Источниками сырья для биотоплива второго поколения являются лигно-целлюлозные соединения, остающиеся после того, как пригодные для использования в пищевой промышленности части биологического сырья удаляются. Использование биомассы для производства биотоплива второго поколения направленно на сокращение количества использованной земли, пригодной для ведения сельского хозяйства[10]. К растениям — источникам сырья второго поколения относятся[11]:

  • Водоросли — простые живые организмы, приспособленные к росту и размножению в загрязнённой или солёной воде (содержат до двухсот раз больше масла, чем источники первого поколения, таких как соевые бобы);
  • Рыжик (растение) — растущий в ротации с пшеницей и другими зерновыми культурами;
  • Jatropha curcas или Ятрофа — растущее в засушливых почвах, с содержанием масла от 27 до 40 % в зависимости от вида.

Из биотоплив второго поколения, продающихся на рынке, наиболее известны BioOil производства канадской компании Dynamotive и SunDiesel германской компании CHOREN Industries GmbH.

По оценкам Германского Энергетического  Агентства (Deutsche Energie-Agentur GmbH) (при ныне существующих технологиях) производство топлив пиролизом биомассы может покрыть 20 % потребностей Германии в автомобильном топливе. К 2030 году, с развитием технологий, пиролиз биомассы может обеспечить 35 % германского потребления автомобильного топлива. Себестоимость производства составит менее €0,80 за литр топлива.

Информация о работе Возобновляемые источники энергии