Возобновляемые источники энергии

Автор: Пользователь скрыл имя, 07 Декабря 2011 в 15:00, курсовая работа

Описание работы

Энерговооруженность общества – основа его научно-технического прогресса, база развития производительных сил. Её соответствие общественным потребностям – важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Однако, человечеству в последнее время постоянно не хватает энергии. Все чаще в газетах и различных журналах встречаются статьи об энергетическом кризисе.

Содержание

Введение 3
1.Энергия ветра 4
2. Энергия Солнца 8
2.1. Преобразователи солнечной энергии 8
2.2. Концентраторы солнечного света 9
2.3. Жилой дом с солнечным отоплением 10
3. Термальная энергия Земли 12
4. Энергия Мирового океана 14
4.1. Энергия приливов 14
4.2. Термальная энергия океана 15
4.3. Внутренняя энергия молекул воды 16
5. Энергия биомассы 18
Заключение 20
Список используемых источников

Работа содержит 1 файл

реферат по энергии.doc

— 216.50 Кб (Скачать)

   2.1.Преобразователи солнечной энергии

   Существует  два основных направления в развитии солнечной энергетики: решение глобального  вопроса снабжения энергией и  создание солнечных преобразователей, рассчитанных на выполнение конкретных локальных задач. Эти преобразователи, в свою очередь, также делятся на две группы; высокотемпературные и низкотемпературные.

     В преобразователях первого типа  солнечные лучи концентрируются  на небольшом участке, температура  которого поднимется до 3000°С. Такие установки уже существуют. Они используются, например, для плавки металлов (см. рис. 4.) 

   

   Рис.4.Высокотемпературный  гелиостат 

   Самая многочисленная часть солнечных  преобразователей работает при гораздо  меньших температурах – порядка 100-200°С. С их помощью подогревают воду, обессоливают ее, поднимают из колодцев. В солнечных кухнях готовят пищу. Сконцентрированным солнечным теплом сушат овощи, фрукты и даже замораживают продукты. Энергию солнца можно аккумулировать днем для обогрева домов и теплиц в ночное время.

   Солнечные установки практически не требуют  эксплуатационных расходов, не нуждаются  в ремонте и требуют затрат лишь на их сооружение и поддержание  в чистоте. Работать они могут  бесконечно. 
 
 

     2.2. Концентраторы солнечного света

     С детства многие помнят, что с помощью собирательной линзы от солнечного света можно зажечь бумагу. В промышленных установках линзы не используются: они тяжелы, дороги и трудны в изготовлении.

     Сфокусировать солнечные лучи  можно и с помощью вогнутого зеркала. Оно является основной частью гелиоконцентратора, прибора, в котором параллельные солнечные лучи собираются с помощью вогнутого зеркала. Если в фокус зеркала поместить трубу с водой, то она нагреется. Таков принцип действия солнечных преобразователей прямого действия.

     Наиболее эффективно их можно  использовать в южных широтах,  но и в средней полосе они  находят применение. Зеркала в  установках используются либо  традиционные – стеклянные, либо  из полированного алюминия. Наиболее  эффективные концентраторы солнечного излучения (рис. 6) имеют форму:

   1.цилиндрического  параболоида (а);

   2.параболоида  вращения (б);

   3.плоско-линейной  линзы Френеля (в).

   

   Рис. 5. Формы концентраторов солнечной энергии 

     Фирма Loose Industries на солнечно-газовой  электростанции в Калифорнии использует систему параболо-цилиндрических длинных отражателей в виде желоба. В его фокусе проходит труба с теплоносителем – дифенилом, нагреваемым до 350°С. Желоб поворачивается для слежения за солнцем только вокруг одной оси (а не двух, как плоские гелиостаты). Это позволило упростить систему слежения за солнцем. Солнечная энергия может непосредственно преобразовываться в механическую. Для этого используется двигатель Стирлинга. Если в фокусе параболического зеркала диаметром 1,5 м установить динамический преобразователь, работающий по циклу Стирлинга, получаемой мощности (1 кВт) достаточно, чтобы поднимать с глубины 20 метров 2 м³ воды в час.

   В реальных гелиосистемах плоско-линейная линза Френеля используется редко  из-за ее высокой стоимости.

   

   Рис.6. Солнечный водонагреватель 

     Водонагреватель. Водонагреватель предназначен для снабжения горячей водой, в основном, индивидуальных хозяйств. Устройство состоит из короба со змеевиком, бака холодной воды, бака-аккумулятора и труб. Короб стационарно устанавливается под углом 30-50° с ориентацией на южную сторону. Холодная, более тяжелая, вода постоянно поступает в нижнюю часть короба, там она нагревается и, вытесненная холодной водой, поступает в бак-аккумулятор. Она может быть использована для отопления, для душа либо для других бытовых нужд.

   Дневная производительность на широте 50° примерно равна 2 кВт/ч с квадратного метра. Температура воды в баке-аккумуляторе достигает 60-70°. КПД установки – 40%.

     Тепловые концентраторы. Каждый, кто хоть раз бывал в теплицах, знает, как резко отличаются условия внутри нее от окружающих: Температура в ней выше. Солнечные лучи почти беспрепятственно проходят сквозь прозрачное покрытие и нагревают почву, растения, стены, конструкцию крыши. В обратном направлении тепло рассеивается мало из-за повышенной концентрации углекислого газа. По сходному принципу работают и тепловые концентраторы.

   Это – деревянные, металлические, или  пластиковые короба, с одной стороны  закрытые одинарным или двойным  стеклом. Внутрь короба для максимального поглощения солнечных лучей вставляют волнистый металлический лист, окрашенный в черный цвет. В коробе нагревается воздух или вода, которые периодически или постоянно отбираются оттуда с помощью вентилятора или насоса.  
 
 

    2.3. Жилой дом с солнечным отоплением

     Среднее за год значение суммарной солнечной радиации на широте 55°, поступающей в сутки на 20 м²  горизонтальной поверхности, составляет 50-60 кВт/ч. Это соответствует затратам энергии на отопление дома площадью 60 м² .

     Для условий эксплуатации сезонно обитаемого жилища средней полосы наиболее подходящей является воздушная система теплоснабжения. Воздух нагревается в солнечном коллекторе и по воздуховодам подается в помещение. Удобства применения воздушного теплоносителя по сравнению с жидкостным очевидны:

    - нет опасности, что система  замерзнет; 

    -нет необходимости в трубах  и кранах;

    - простота и дешевизна. 

     Недостаток – невысокая теплоемкость  воздуха. 

     Конструктивно коллектор представляет  собой ряд застекленных вертикальных коробов, внутренняя поверхность которых зачернена матовой краской, не дающей запаха при нагреве. Ширина короба около 60 см. В части расположения солнечного коллектора на доме предпочтение отдается вертикальному варианту. Он много проще в строительстве и дальнейшем обслуживании. По сравнению с наклонным коллектором (например, занимающим часть крыши), не требуется уплотнения от воды, отпадает проблема снеговой нагрузки, с вертикальных стекол легко смыть пыль.

     Плоский коллектор, помимо прямой  солнечной радиации, воспринимает рассеянную и отраженную радиацию: в пасмурную погоду, при легкой облачности, словом, в тех условиях, какие мы реально имеем в средней полосе. Плоский коллектор не создает высокопотенциальной теплоты, как концентрирующий коллектор, но для конвекционного отопления этого и не требуется, здесь достаточно иметь низкопотенциальную теплоту. Солнечный коллектор располагается на фасаде, ориентированном на юг (допустимо отклонение до 30° на восток или на запад).

     Неравномерность солнечной радиации в течение дня, а также желание обогревать дом ночью и в пасмурный день диктует необходимость устройства теплового аккумулятора. Днем он накапливает тепловую энергию, а ночью отдает. Для работы с воздушным коллектором наиболее рациональным считается гравийно-галечный аккумулятор. Он дешев, прост в строительстве. Гравийную засыпку можно разместить в теплоизолированной заглубленной цокольной части дома. Теплый воздух нагнетается в аккумулятор с помощью вентилятора.

     Для дома, площадью 60 м²  , объем аккумулятора составляет от 3 до 6 м³ . Разброс определяется качеством исполнения элементов гелиосистемы, теплоизоляцией, а также режимом солнечной радиации в конкретной местности. Система солнечного теплоснабжения дома работает в четырех режимах

   (рис.  7. а-г):

   В холодные солнечные дни нагретый в коллекторе воздух поднимается и через отверстия у потолка поступает в помещения. Циркуляция воздуха идет за счет естественной конвекции. В ясные теплые дни горячий воздух забирается из верхней зоны коллектора и с помощью вентилятора прокачивается через гравий, заряжая тепловой аккумулятор. Для ночного отопления и на случай пасмурной погоды воздух из помещения прогоняется через аккумулятор и возвращается в комнаты подогретый.

     В средней полосе гелиосистема  лишь частично обеспечивает потребности отопления. Опыт эксплуатации показывает, что сезонная экономия топлива за счет использования солнечной энергии достигает 60%.

   

 
 
 

   

   Рис. 7. Солнечный дом 

   а) – отопление и аккумулирование тепловой энергии;

   б) – отопление от аккумулятора;

   в) – аккумулирование тепловой энергии;

   г) – отопление от коллектора.

   3. Термальная энергия земли.

     Издавна люди знают о стихийных  проявлениях гигантской энергии,  таящейся в недрах земного  шара. Память человечества хранит  предания о катастрофических  извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

   Энергетика  земли  (геотермальная энергетика) базируется на использовании природной  теплоты Земли. Недра Земли таят в себе колоссальный, практически неисчерпаемый источник энергии.

   Так, например, маленькая европейская  страна Исландия – "страна льда" в дословном переводе – полностью обеспечивает себя фруктами и овощами. Многочисленные исландские теплицы получают энергию от тепла земли - других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников, жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно.

   Столица - Рейкьявик, в которой проживает  половина населения страны, отапливается только за счет подземных источников. Но не только для отопления черпают люди энергию из глубин земли. Работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины-360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

    

     4. Энергия мирового океана

   Известно, что запасы энергии в Мировом  океане колоссальны, ведь две трети  земной поверхности (361 млн. кв. км) занимают моря и океаны: акватория Тихого океана составляет 180 млн. кв. км,  Атлантического – 93 млн. кв. км,  Индийского – 75 млн. кв. км. Так, тепловая энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж.  Кинетическая энергия океанских течений оценивается величиной порядка 1018  Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

   Происходящее весьма быстрое истощение запасов ископаемых топлив, использование которых к тому же связано с существенным загрязнением окружающей среды, заставляет ученых и инженеров уделять все большее внимание поискам возможностей рентабельной утилизации обширных и безвредных источников энергии, в том числе и энергии в Мировом океане. Широкая общественность еще не знает, что поисковые работы по извлечению энергии из морей и океанов приобрели в последние годы в ряде стран уже довольно большие масштабы и что их перспективы становятся все более обещающими.

Информация о работе Возобновляемые источники энергии