Способы очистки газовых выбросов в атмосферу

Автор: Пользователь скрыл имя, 23 Января 2012 в 22:18, сочинение

Описание работы

Двадцатый век вошел в историю как век небывалого технического прогресса, бурного развития науки, промышленности, энергетики, сельского хозяйства.

Одновременно как сопровождающий фактор росло и продолжает расти вредное воздействие индустриальной деятельности человека на окружающую среду. В результате происходит в значительной мере непредсказуемое изменение экосистем и всего облика планеты Земля.

Работа содержит 1 файл

Текущий контроль. Эссе.doc

— 76.50 Кб (Скачать)

  Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей.

Абсорбенты, применяемые  в промышленности, оцениваются по следующим показателям: 1) абсорбционная  емкость, т.е. растворимость извлекаемого компонента в поглотителе в зависимости от температуры и давления; 2) селективность, характеризуемая соотношением растворимостей разделяемых газов и скоростей их абсорбции; 3) минимальное давление паров во избежание загрязнения очищаемого газа парами абсорбента; 4) дешевизна; 5) отсутствие коррозирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др.

 Очистная аппаратура аналогична уже рассмотренной аппаратуре мокрого улавливания аэрозолей. Наиболее распространен насадочный скруббер, применяемый для очистки газов от диоксида серы, сероводорода, хлороводорода, хлора, оксида и диоксида углерода, фенолов и т.д

  Для очистки выбросов от газообразных и парообразных примесей применяют и интенсивную массообменную аппаратуру - пенные аппараты, безнасадочный форсуночный абсорбер, скруббер Вентури, работающие при более высоких скоростях газа. При достаточном числе ступеней очистки (многополочный пенный аппарат) достигаются высокие показатели глубины очистки: для некоторых процессов до 99,9%. Особенно перспективны для очистки газов от аэрозолей и вредных газообразных примесей пенные аппараты со стабилизатором пенного слоя.

  Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы.

Любой процесс  мокрой абсорбционной очистки выхлопных  газов от газо- и парообразных примесей целесообразен только в случае его  цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа.

  Адсорбционные методы применяют для различных технологических целей - разделение парогазовых смесей на компоненты с выделением фракций, осушка газов и для санитарной очистки газовых выхлопов. В последнее время адсорбционные методы выходят на первый план как надежное средство защиты атмосферы от токсичных газообразных веществ, обеспечивающее возможность концентрирования и утилизации этих веществ.

  Промышленные адсорбенты, чаще всего применяемые в газоочистке, - это активированный уголь, силикагель, алюмогель, природные и синтетические цеолиты (молекулярные сита). Основные требования к промышленным сорбентам - высокая поглотительная способность, избирательность действия (селективность), термическая устойчивость, длительная служба без изменения структуры и свойств поверхности, возможность легкой регенерации. Чаще всего для санитарной очистки газов применяют активный уголь благодаря его высокой поглотительной способности и легкости регенерации.

  Общие достоинства адсорбционных методов очистки газов:

- глубокая очистка  газов от токсичных примесей;

- сравнительная  легкость регенерации этих примесей  с превращением их в товарный  продукт или возвратом в производство; таким образом осуществляется принцип безотходной технологии.

Адсорбционный метод особенно рационален для удаления токсических примесей (органических соединений, паров ртути и др.), содержащихся в малых концентрациях, т.е. как завершающий этап санитарной очистки отходящих газов.

Недостатки большинства  адсорбционных установок - периодичность  процесса и связанная с этим малая  интенсивность реакторов, высокая  стоимость периодической регенерации  адсорбентов. Применение непрерывных  способов очистки в движущемся и  кипящем слое адсорбента частично устраняет эти недостатки, но требует высокопрочных промышленных сорбентов, разработка которых для большинства процессов еще не завершена.

Каталитические  методы очистки газов основаны на реакциях в присутствии твердых  катализаторов, т.е. на закономерностях гетерогенного катализа. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т.е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствий: которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами).

Трудно провести границу между адсорбционными и  каталитическими методами газоочистки, так как такие традиционные адсорбенты, как активированный уголь, цеолиты, служат активными катализаторами для  многих химических реакций. Очистку  газов на адсорбентах-катализаторах называют адсорбционно-каталитической. Но методы утилизации соединений, полученных при катализе, иные, чем в адсорбционных процессах.

   Адсорбционно-каталитические методы применяют для очистки промышленных выбросов от диоксида серы, сероводорода и серо-органических соединений.

  Представляет большой интерес очистка дымовых газов ТЭЦ или других отходящих газов, содержащих SO2, во взвешенном слое высокопрочного активного угля с получением в качестве товарного продукта серной кислоты и серы.

Другим примером адсорбционно-каталитического метода может служить очистка газов от сероводорода окислением на активном угле или на цеолитах во взвешенном слое адсорбента-катализатора.

Широко распространен  способ каталитического окисления  токсичных органических соединений и оксида углерода в составе отходящих газов с применением активных катализаторов, не требующих высокой температуры зажигания, например металлов группы платины, нанесенных на носители.

  В промышленности применяют также каталитическое восстановление и гидрирование токсичных примесей в выхлопных газах. На селективных катализаторах гидрируют СО до CH4 и Н2О, оксиды азота - до N2 и Н2О.

  Применяют восстановление оксидов азота в элементарный азот на палладиевом или платиновом катализаторах.

  Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны.

  Недостаток многих процессов каталитической очистки - образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбция), что усложняет установку и снижает общий экономический эффект.

  Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителей или оксида углерода.

  Простейший метод - факельное сжигание - возможен, когда концентрация горючих загрязнителей близка к нижнему пределу воспламенения.  Когда концентрация горючих примесей меньше нижнего предела воспламенения, то необходимо подводить некоторое количество теплоты извне. Чаще всего теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточно высоком содержании горючих примесей, иначе возрастает расход добавляемого горючего газа.

  Для полноценной очистки газовых выбросов целесообразны комбинированные методы, в которых применяется оптимальное для каждого конкретного случая сочетание грубой, средней и тонкой очистки газов и паров. На первых стадиях, когда содержание токсичной примеси велико, более подходят абсорбционные методы, а для доочистки - адсорбционные или каталитические. 

Заключение 
 

Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Такое производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов.

Конечно же, понятие  «безотходное производство» имеет  несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален.

В настоящее  время определилось несколько основных направлений охраны биосферы, которые, в конечном счете ведут к созданию безотходных технологий:

- разработка  и внедрение принципиально новых  технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов;

- создание бессточных  технологических систем и водооборотных  циклов на базе наиболее эффективных  методов очистки сточных вод;

- переработка  отходов производства и потребления  в качестве вторичного сырья;

- создание территориально-промышленных  комплексов с замкнутой структурой  материальных потоков сырья и  отходов внутри комплекса.

 Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса. 

Список литературы 

1. «Основы химической  технологии» Учебник для студентов И.П. Мухленов, А.Е. Горштейн, Е.С. Тумаркина; г. Москва 2005 г.

2. «Очистка воздуха». Учебное пособие Е.А. Штокман - Изд.60 АСВ, 1998 г. 

3. «Техника защиты окружающей среды» Родионов А.И., Клушин В.П., Торочешников И.С..Учебник для вузов. г. Москва Химия, 1989 г.

Информация о работе Способы очистки газовых выбросов в атмосферу