Автор: Пользователь скрыл имя, 20 Апреля 2013 в 09:40, реферат
Работа содержит ответы на вопросы по дисциплине "Экология".
1 Классификация понятий « измерение», « электрические измерения». Измерение - это процесс определения физической величины с помощью технических средств. Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений: Мера - это средство измерения физической величины заданного размера. Измерительный прибор - это средство измерения, в котором вырабатывается сигнал, доступный для восприятия наблюдателем. Меры и приборы подразделяются на образцовые и рабочие. Образцовые меры и приборы служат для поверки по ним рабочих средств измерений. Рабочие меры и приборы служат для практических измерений. Существует два метода измерения: 1) метод непосредственной оценки, заключающийся в том, что в процессе измерения сразу оценивается измеряемая величина; 2) метод сравнения, или нулевой метод, служащий основой действия приборов сравнения: мостов, компенсаторов. Измерение физической величины включает этапы: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации). Характеристикой точности измерения является его погрешность или неопределённость. Особое место в измерительной технике занимают электрические измерения. В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов. Классификация измерений: Прямое измерение — измерение, при котором искомое значение физической величины получают непосредственно. Косвенное измерение — определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Совместные измерения — проводимые одновременно измерения двух или нескольких неодноимённых величин для определения зависимости между ними. Совокупные измерения — проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Избыточные измерения (точнее информативно-избыточные измерения) — измерения нескольких рядов однородных физических величин, размеры которых связаны между собой по закону арифметической или геометрической прогрессии, при неизменных или норированно измененных значениях параметров. Современная энергетика и электроника опираются на измерение электрич величин. В настоящее время разработаны и выпускаются приборы, с помощью которых могут быть произведены измерения более 50 электрических величин. Перечень электрических величин включает в себя ток, напряжение, частоту, отношение токов и напряжений, сопротивление, емкость, индуктивность, мощность и т.д. |
2 Классификация
средств измерений и их |
3 Основные
системные единицы |
4 Измерительный прибор, измерительный
преобразователь: определение, |
5 Классификация
погрешностей измерительных |
6 Основные метрологические
характеристики измерительных
|
7 Понятие о прямых и косвенных измерениях. Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой , где - искомое значение измеряемой величины, а - значение, непосредственно получаемое из опытных данных. При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др. Основное уравнение прямого измерения: λ = N ∙ K, где λ – результат измерения; К – значение величины, принятой за единицу измерения (сравнение); N – отвлеченное число, показывающее во сколько раз λ больше N. Косвенные - это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Уравнение косвенного измерения λ= f (λ1,λ2,λ3,...,λn). Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения. Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического.
9 Характеристики измерительных приборов. Качество измерительного прибора – это уровень соответствия прибора своему прямому предназначению. Качество измерительного прибора определяется тем, насколько при использовании измерительного прибора достигается цель измерения. Главная цель измерения – это получение достоверных и точных сведений об объекте измерений. Для того чтобы определить качество прибора, необходимо рассмотреть его характеристики: 1) постоянную прибора; 2) чувствительность прибора; 3) порог чувствительности измерительного прибора; 4) точность измерительного прибора. Постоянная прибора – это некоторое число, умножаемое на отсчет с целью получения искомого значения измеряемой величины, т. е. показания прибора. Постоянная прибора в некоторых случаях устанавливается как цена деления шкалы, которая представляет собой значение измеряемой величины, соответствующее одному делению. Чувствительность прибора – это число, в числителе которого стоит величина линейного или углового перемещения указателя (если речь идет о цифровом измерительном приборе, то в числителе будет изменение численного значения, а в знаменателе – изменение измеряемой величины, которое вызвало данное перемещение (или изменение численного значения)). Порог чувствительности измерительного прибора – число, являющееся минимальным значением измеряемой величины, которое может зафиксировать прибор. Точность измерительного прибора – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины. Точность измерительного прибора определяется посредством установления нижнего и верхнего пределов максимально возможной погрешности. Практикуется подразделение приборов на классы точности, основанное на величине допустимой погрешности. Класс точности средств измерений – это обобщающая характеристика средств измерений, которая определяется границами основных и дополнительных допускаемых погрешностей и другими, определяющими точность характеристиками . Классы точности определенного вида средств измерений утверждаются в нормативной документации. Причем для каждого отдельного класса точности утверждаются определенные требования к метрологическим характеристикам Объединение установленных метрологических характеристик определяет степень точности средства измерений, принадлежащего к данному классу точности. Класс точности средства измерений определяется в процессе его разработки. Так как в процессе эксплуатации метрологические характеристики как правило ухудшаются, можно по результатам проведенной калибровки (поверки) средства измерений понижать его класс точности. |
8 Понятие о классе
точности измерительных
|
10 Измерительные механизмы Измерител механизм прибора магнитоэлектрич системы состоит из двух частей. Неподвижная часть состоит из постоянного магнита , его полюсных наконечников и неподвижного сердечника . В зазоре между полюсными наконечниками и сердечником существует сильное магнитное поле. Подвижная часть измерительного механизма состоит из легкой рамки , обмотка которой навивается на алюминиевый каркас, и двух полуосей , неподвижно связанных с каркасом рамки. Концы обмотки припаяны к двум спиральным пружинам , через которые в рамку подводится измеряемый ток. К рамке прикреплены стрелка и противовесы . В зазоре между полюсными наконечниками и сердечником устанавливается рамка. Ее полуоси вставляются в стеклянные или агатовые подшипники. При прохождении тока по обмотке рамки последняя стремится повернуться, но ее свободному повороту противодействуют спиральные пружины. И тому углу, на который рамка все же развернется, оказывается, соответствует определенная сила тока, который протекает по обмотке рамки. Иными словами, угол поворота рамки пропорционален силе тока. Фиксируют угол поворота рамки по стрелке, которая к рамке жестко прикреплена. Так как угол поворота стрелки пропорционален силе тока, то шкала измерительного прибора магнитоэлектрической системы равномерная. Поворачиваясь, катушка отклоняет стрелку прибора. У амперметров и вольтметров измерительные механизмы в принципе одинаковы. Их отличие заключается лишь в электрическом сопротивлении рамок. У амперметра сопротивление рамки значительно меньше, чем у вольтметра.
13 Измерительные механизмы электродинамической системы, устройства, принцип действия. Принцип действия основан на взаимодействии магнитных полей подвижной и неподвижной катушек с током. На рисунке показана принципиальная схема электродинамич измерител прибора. (1и 2 – подвижная и неподвижная катушки.) Вращающий момент всегда будет направлен так, чтобы направления магнитных потоков совпадали. Общая энергия системы равна: ; – уравнение магнитной шкалы.( Шкала неравномерная, а квадратичная).
Механизм без стального сердечника обеспечивает показания, в основном не зависящие от частоты; однако он в значительной мере подвержен влиянию внешнего магнитного поля, если в нем не предусмотрено магнитное экранирование. |
11 Измерительные механизмы Электромагнитный прибор- это измерител прибор, принцип действия которого основан на взаимодействии магнит поля, пропорционального измеряемой величине, с сердечником, выполненным из ферромагнитного материала. Основные элементы Э. п.: измерительная схема, преобразующая измеряемую величину в постоянный или переменный ток, и измерит, механизм электромагнитной системы (рис.). Электрический ток в катушке электромагнитной системы создаёт электромагнитное поле, втягивающее сердечник в катушку, что приводит к возникновению на оси вращающего момента, пропорционального квадрату силы тока, протекающего по катушке. В результате действия на ось пружины создаётся момент, противодействующий вращающему моменту и пропорциональный углу поворота оси. При взаимодействии моментов ось и связанная с ней стрелка поворачиваются на угол, пропорциональный квадрату измеряемой величины. При равенстве моментов стрелка останавливается. Выпускаются электромагнитные амперметры и вольтметры для измерений главным образом в цепях переменного тока частотой 50 гц. В электромагнитном амперметре катушка измерительного механизма включается последовательно в цепь измеряемого тока, в вольтметре параллельно. Электромагнитные измерит, механизмы применяют также в логометрах. Наиболее распространены щитовые приборы классов точности 1,5 и 2,5, хотя существуют приборы классов 0,5 и даже 0,1 с рабочей частотой до 800 гц. К достоинствам магнитоэлектрич измерительн механизмов относятся высокая чувствительность, незначительное влияние на режим работы внешних магнитных полей. К недостаткам магнитоэлектрич механизмов относятся сложная и дорогая конструкция, возможность использования лишь в цепях постоянного тока. 14 Измерительные механизмы ферромагнитной системы, устройства, принцип действия. Отличием ферродинамического измерительного механизма является размещение неподвижной катушки на магнитопроводе. Замкнутый через железо (ферродинамический) механизм, в котором магнитный поток, созданный током, проходит по замкнутой шихтованной (выполненной из набора листов) магнитной цепи. Эти механизмы очень прочны, однако они уступают по точности измерительным механизмам электродинамической системы. В частности, они не могут быть применены для измерений постоянного тока. – за счет равномерного зазора. Измерительные механизмы ферродинамической системы обладают значительным вращающим моментом, за счет равномерного узкого зазора при значительной магнитной индукции, что позволяет использовать эти измерительные механизмы в самопишущих приборах, а также приборах, работающих в условиях тряски и вибрации. Достоинствами этого механизма являются малые габариты, высокая точность. Недостатки: неравномерная шкала, зависимость от показаний частоты, узкий частотный диапазон (до 60 Гц, расширенный до 300).
|
12 Измерительные механизмы электростатической системы, устройства, принцип работы. Измерител механизм — совокупность элементов средства измерений, которые обеспечивают необходимое перемещение указателя. Электростатич механизм состоит из двух (и более) металлических изолированных пластин, выполняющих роль электродов. На неподвижные пластины подается потенциал одного знака, а на подвижные пластины — потенциал другого знака. Подвижная пластина вместе с указателем укреплена на оси и под действием сил электрического поля между пластинами поворачивается. При постоянном напряжении между пластинами вращающий момент пропорционален зарядам на этих пластинах, при синусоидальном напряжении подвижная часть механизма реагирует на среднее значение момента. Принцип действия электростатич преобразователей основан на взаимодействии электрич полей двух тел (систем пластин), заряженных разноименными зарядами. В результате такого взаимодействия одна из систем, являющаяся подвижной, перемещается относительно неподвижной системы пластин, вызывая при этом отклонение стрелки отсчетного устройства, связанной с подвижной частью преобразователя, в сторону возрастающих показаний. Перемещение подвижной части преобразователя относительно неподвижной вызывает изменение емкости между ними. Конструктивно подвижная и неподвижная части измерит механизма выполняются в виде пластин. Электростатические приборы наиболее широко используются в электроизмерительной технике в виде различных вольтметров. Для предохранения преобразователя от выхода из строя вследствие протекания через него больших токов при коротком замыкании внутрь низковольтных вольтметров встраивается защитный резистор, ограничивающий эти токи (рис 7). Значение защитного сопротивления определяется исходя из допустимого тока через растяжки, на которых крепится подвижная часть, при коротком замыкании пластин. Вольтметр при этом подключается к источнику измеряемого напряжения с помощью зажимов 1 и 2. При частотах измеряемого переменного напряжения порядка сотен килогерц защитный резистор вызывает большие дополнительные частотные погрешности за счет емкостного тока, поэтому он отключается и вольтметр включается в электрическую цепь зажимами 1 и Э (экран). В вольтметрах, рассчитанных на измерение более высоких напряжений, расстояния между пластинами достаточно велики и защитные резисторы не используются. При измерениях высокочастотных напряжений в электрических цепях с несимметричным выходом зажим Э, соединенный с внутренним экраном прибора, должен обязательно заземляться. Рисун. 7 – Схема включения электростатич измерител преобразователя.
|
15 Измерительные
механизмы индукционной Принципиальная схема устройства индукцион двухпоточного измерит. механизма: 1 — электромагниты, по обмоткам к-рых протекают токи разл. силы (I1 и I2); 2 — вращающийся диск; 3— ось диска; устройство, создающее тормозной момент, не показано. В результате взаимодействия поля с индуцированными им в подвижной части токами на последнюю действует вращающий момент, пропорц. измеряемой величине. В Измер индукуц механизмах ., предназначенных для счётчиков электрич. энергии, на подвижный диск помимо магн. потоков, создаваемых катушками электромагнитов, ток в одной из которых пропорц. напряжению, а в другой — силе тока нагрузки, действует ещё магн. поток от пост. магнита, создающего тормозной (противодействующий при вращении диска) момент. Показания счётчика пропорц. числу оборотов диска.. Однако они очень чувствительны к изменению частоты перем. тока в сети и поэтому предназначаются для работы только на определ. частоте (обычно 50 Гц). Индукционный механизм состоит из двух неподвижных магнитопроводов с обмотками, подвижного алюминиевого диска, укрепленного на оси и постоян магнита. Магнит потоки создаваемые синусоидальными токами в обмотках и пронизывающие диск, смещены в пространстве. При этих условиях в диске образуется бегущее магнит поле, под влиянием которого диск приходит во вращение. Магнит служит для создания тормозного момента. Среднее значение вращающего момента пропорционально произведению токов в двух обмотках и синусу фазового угла между ними. |
16 Принципы обозначения
электроизмерительных приборов( |
19 Понятие
о компенсационном моменте в
индукционном измерительном Принцип компенсации заключается в том, что рабочий поток ФU параллельного электромагнита вблизи диска искусственно расщепляется на два потока, смещенные в пространстве и сдвинутые по фазе. Расщепления потоков и сдвиг по фазе достигается обычно с помощью медной или латунной пластинки, перекрывает часть полюса сердечника параллельного электромагнита. Взаимодействие полученных потоков создает дополнительный крутящий момент - компенсационный момент, определяемый зависимостью, аналогичной M = c • f • Ф1 • Ф2 • sinψ.
|
17 Вращающий и тормозной момент
электроизмерительного прибора. |
18 Типы успокоителей
в электромеханических
N - магнит. К - крыло. Воздушный успокоитель состоит из камеры и легкого (как правило алюминиевого) крыла, жестко закрепленного на оси подвижной части и находится внутри камеры. Между крылом и стенками камеры имеется зазор 0,1-0,02 мм. При вращении оси крыло перемещается внутри камеры, в которой за малости зазора разница давлений. Это препятствует быстрому и свободному перемещению подвижной части и вызывает ее успокоения. Воздушные успокоители не содержат источников электрич или магнитн полей, является их достоинством по сравнению с магнитоиндукц успокоителями, но они относительно сложные конструктивно и малонадежные. Жидкостное успокоение: при колебании подвижной части измерительного механизма или его отдельных деталей в вязкой жидкости вместе с ними колеблется непосредственно соприкасающийся и прилипший к поверхности деталей слой жидкости, тогда как более удаленные слои остаются в покое. Благодаря наличию градиента скорости между различными слоями жидкости возникает трение, на которое расходуется нежелательна кинетическая энергия колебаний подвижной части, то есть создается необходимое успокоение. Жидкостное успокоение создается конструктивными различными способами, выбор которых определяется необходимой степенью успокоения, назначением и конструкцией измерительного механизма, условиями эксплуатации и других причин. В осциллографических гальванометра с жидкостным успокоением в жидкости содержится вся подвижная система. Для ряда приборов на растяжках в жидкости находится только часть растяжки, что на определенном участке охватывается, например, спиралькой, заполненной жидкостью с большой вязкостью. Жидкостное успокоение имеет преимущества: Одно из главных его преимуществ: жидкостное успокоение делает тормозящее воздействие при движении подвижной части во всех направлениях, используемый для повышения виброустойчивости ряда приборов.
|
20 Устройство
и принцип работы логометра
в электродинамической системе.
24 Общие принципы расчёта сопротивления шунта и добавочного резистора. Гальванометр может измерять максимальную силу тока Iг, а нам необходимо измерить силу тока I. Тогда ток I – Iг необходимо пропустить не через гальванометр (микроамперметр), а рядом, по параллел цепи. Такую электрич цепь, включаемую параллельно гальванометру и служащую для расширения пределов измерения амперметра, называют шунтом. В этом случае возникает необходимость рассчитать сопротивление шунта и проградуировать шкалу гальванометра в новых значениях силы тока. Пусть I – сила тока, которую необходимо измерить, Iг – максимальн сила тока, которую может измерить гальванометр. Тогда Iш = I – Iг – сила тока, которая должна протекать через шунт. Обозначим Rг – сопротивление гальванометра, Rш – сопротивление шунта. По законам параллельн соединения проводников Uш=Uг или Iш×Rш=Iг×Rг. Отсюда, с учетом силы тока через шунт, получим: Rш=( Iг×Rг)/ Iш=( Iг×Rг)/( I – Iг) = Rг/(n-1). Здесь n = I/Iг – коэффициент шунтирования. Рассчитав по формуле сопротивление шунта, подбираем шунт. Для расширения пределов измерения гальванометра при использовании его в качестве вольтметра последовательно с гальванометром включают добавочный резистор . Рассчитаем сопротивление добавочного резистора. Пусть U – напряжение, которое надо измерить вольтметром, Uг – максимальн напряжение, которое может измерить гальванометр. Тогда Uд=U–Uг - напряжение, которое должно падать на добавочном резисторе. Обозначим Rг – сопротивление гальванометра, Rд – сопротивление добавоч резистора. По законам последовател соединения проводников Iг=Iд или Uг/Rг=Uд/Rд. Отсюда с учетом напряжения на добавочном резисторе получим: Rд = Rг (U-Uг)/Uг = Rг (n – 1), где n = U/Uг. Рассчитав сопротивление добавоч резистора, выбирают соответствующий постоян резистор с учетом его мощности рассеяния. |
предназначенные
для преобразования разного рода
не электрических величин в
26 Особенности многопредельных вольтметров. В многопредельных амперметрах для изменения пределов измерения применяют многопредельные шунты. Поэтому многопредельные амперметры снабжают переключателями диапазонов измерений или несколькими входными зажимами. В многопредельных вольтметрах используют несколько добавочных резисторов. Поэтому многопредельные вольтметры снабжают переключателем диапазонов или несколькими входными зажимами. |