Роль воды для живого

Автор: Пользователь скрыл имя, 21 Ноября 2012 в 13:32, доклад

Описание работы

Человеческий организм состоит из 70-80% воды, в некоторых растениях воды содержится до 90% и более. Такое высокое содержание воды в живом организме невольно наводит на мысль о более значимой ее роли, нежели простой нейтральный растворитель или некая нейтральная среда.
Но какова же действительная реальная роль воды в организме? Какие основные функции и как она их исполняет? Ведь по этому поводу уже имеется достаточный объем научных сведений, которыми можно описать практически весь наблюдаемый спектр воздействия воды на организм.

Работа содержит 1 файл

доклад экология.doc

— 72.50 Кб (Скачать)

Министерство  образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное  учреждение высшего профессионального  образования

«Санкт-Петербургский государственный  университет технологии и дизайна»

ИНСТИТУТ  БИЗНЕС-КОММУНИКАЦИЙ

КАФЕДРА  БИЗНЕС-ТЕХНОЛОГИЙ

Доклад по экологии на тему:

Роль воды для живого

                                                           2011 

Оглавление

 

Введение

Человеческий  организм состоит из 70-80% воды, в некоторых  растениях воды содержится до 90% и  более. Такое высокое содержание воды в живом организме невольно наводит на мысль о более значимой ее роли, нежели простой нейтральный растворитель или некая нейтральная среда.

Но какова же действительная реальная роль воды в  организме? Какие основные функции  и как она их исполняет? Ведь по этому поводу уже имеется достаточный объем научных сведений, которыми можно описать практически весь наблюдаемый спектр воздействия воды на организм.

Живые организмы  строят свои тела, структуры, органы и  жизнеобеспечивающие функции из тех материалов, которые их окружают в их естественной окружающей среде. Во-первых, эти материалы должны быть относительно легкодоступны, во-вторых, они должны удовлетворять требованиям обеспечения комфортного существования организма, и, в-третьих, исполнять необходимые функции основного жизнеобеспечения, возложенные на них живым организмом.

Эти положения  общеизвестны и наукой пока не обнаружено чего-то необычного в этом роде, что  отсутствовало бы в обычной окружающей среде. Среди компонентов окружающей среды, используемых живыми организмами, особое место, в силу своих специфических свойств, занимает вода.

Глава 1. Вода в жизни организмов

1.1 Экологическая роль воды

Вода является необходимым  условием существования всех живых  организмов на Земле. Значение воды в  процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций. Особая роль воды для наземных организмов (особенно растений) заключается в необходимости постоянного пополнения ее из-за потерь при испарении. Поэтому вся эволюция наземных организмов шла в направлении приспособления к активному добыванию и экономному использованию влаги. Наконец, для многих видов растений, животных, грибов и микроорганизмов вода является непосредственной средой их обитания.

Увлажненность местообитания  и, как следствие, водообеспечение наземных организмов зависят прежде всего от количества атмосферных осадков, их распределения по временам года, наличия водоемов, уровня грунтовых вод, запасов почвенной влаги и т. п. Влажность оказывает влияние на распространение растений и животных как в пределах ограниченной территории, так и в широком географическом масштабе, определяя их зональность (смена лесов степями, степей — полупустынями и пустынями).

При изучении экологической  роли воды учитывается не только количество выпадающих осадков, но и соотношение  их величины и испаряемости. Области, в которых испарение превышает  годовую величину суммы осадков, называются аридными (сухими, засушливыми). В аридных областях растения испытывают недостаток влаги в течение большей части вегетационного периода. В гумидных (влажных) областях растения обеспечены водой в достаточной мере.

Высшие наземные растения, ведущие прикрепленный образ жизни, в большей степени, чем животные, зависят от обеспеченности субстрата и воздуха влагой. По приуроченности к местообитаниям с разными условиями увлажнения и по выработке соответствующих приспособлений среди наземных растений различают три основные экологические группы: гигрофиты, мезофиты и ксерофиты. Условия водоснабжения существенно влияют на их внешний облик и внутреннюю структуру.

Гигрофиты — растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. Для них характерно отсутствие приспособлений, ограничивающих расход воды, и неспособность переносить даже незначительную ее потерю. Наиболее типичные гигрофиты — травянистые растения и эпифиты влажных тропических лесов и нижних ярусов сырых лесов в разных климатических зонах (чистотел большой, недотрога обыкновенная, кислица обыкновенная и др.), прибрежные виды (калужница болотная, плакун-трава, рогоз, камыш, тростник), растения сырых и влажных лугов, болот (белокрыльник болотный, сабельник болотный, вахта трехлистная, осоки), некоторые культурные растения.

Ксерофиты - растения сухих местообитаний, способные переносить продолжительную засуху, оставаясь физиологически активными. Это растения пустынь, сухих степей, саванн, сухих субтропиков, песчаных дюн и сухих, сильно нагреваемых склонов.

Структурные и физиологические  особенности ксерофитов нацелены на преодоление постоянного или  временного недостатка влаги в почве  или воздухе. Решение данной проблемы осуществляется тремя способами: 1) эффективным добыванием (всасыванием) воды, 2) экономным ее расходованием, 3) способностью переносить большие потери воды.

Мезофиты занимают промежуточное положение между гигрофитами и ксерофитами. Они распространены в умеренно влажных зонах с умеренно теплым режимом и достаточно хорошей обеспеченностью минеральным питанием. К мезофитам относятся растения лугов, травянистого покрова лесов, лиственные деревья и кустарники из областей умеренно влажного климата, а также большинство культурных растений и сорняки. Для мезофитов характерна высокая экологическая пластичность, позволяющая им адаптироваться к меняющимся условиям внешней среды.

1.2. Адаптации животных к водному режиму

Способы регуляции водного  баланса у животных разнообразнее, чем у растений. Их можно разделить  на поведенческие, морфологические и физиологические.

К числу поведенческих приспособлений относятся поиски водоемов, выбор мест обитания, рытье нор и т. д. В норах влажность воздуха приближается к 100%, что снижает испарение через покровы, экономит влагу в организме.

К морфологическим способам поддержания нормального водного баланса относятся образования, способствующие задержанию воды в теле; это раковины наземных моллюсков, отсутствие кожных желез и ороговение покровов пресмыкающихся, хитинизированная кутикула насекомых и др.

Физиологические приспособления регуляции водного обмена можно разделить на три группы: 1) способность ряда видов к образованию метаболической воды и довольствованию влагой, поступающей с пищей (многие насекомые, мелкие пустынные грызуны); 2) способность к экономии влаги в пищеварительном тракте за счет всасывания воды стенками кишечника, а также образования высококонцентрированной мочи (овцы, тушканчики); 3) развитие выносливости к обезвоживанию организма благодаря особенностям кровеносной системы, эффективной терморегуляции потоотделением и отдачей воды со слизистых оболочек ротовой полости (верблюды, овцы, собаки).

Глава 2. Свойства воды

2.1. Вода как растворитель. Гидрофобные и гидрофильные вещества

Вода имеет полярную молекулу. Кислород как более электроотрицательный атом оттягивает на себя общую с атомом водорода электронную плотность к себе и потому несет частичный отрицательный заряд; атомы водорода, от которых электронная плотность смещена, несут частичный положительный заряд. Таким образом, молекула воды представляет собой диполь, т.е. имеет положительно и отрицательно заряженные участки. 

Молекулы воды образуют друг с другом водородные связи. Они обусловлены силами притяжения между несущим частичный отрицательный заряд атомом кислорода одной молекулы и несущим частичный положительный заряд атомом водорода другой молекулы.

Водородные связи обуславливают целый ряд важнейших свойств воды, в первую очередь - ее свойства как растворителя.

По отношению к воде все практически вещества можно разделить на две группы:

1. Гидрофильные (от греч. "филео" - любить, имеющие положительное сродство к воде). Эти  вещества имеют полярную молекулу, включающую электроотрицательные атомы (кислород, азот, фосфор и др.). В результате отдельные атомы таких молекул также обретают частичные заряды и образуют водородные связи с молекулами воды. Примеры: сахара, аминокислоты, органические кислоты. 
2. Гидрофобные (от греч. "фобос" - страх, имеющие отрицательное сродство к воде). Молекулы таких веществ неполярны и не смешиваются с полярным растворителем, каковым является вода, но хорошо растворимы в органических растворителях, например, в эфире, и в жирах. Примером могут служить линейные и циклические углеводороды. в т.ч. бензол.

Среди органических веществ встречаются также соединения, одна часть молекулы которых неполярна и проявляет гидрофобные свойства, а другая - полярна и, следовательно, гидрофильна. Такие вещества называются амфипатическими. 
Молекула фосфотидилсерина (одного из фосфолипидов плазматической мембраны клеток, справа) может служить примером амфипатических соединений.

По образному выражению, все мы - "живые растворы". Действительно, практически все процессы как в клетках организма, так и в межклеточной среде организма протекают именно в водных растворах. Кроме того, со свойством воды как растворителя прямо связана транспортная функция внутренних жидкостей как у многоклеточных животных (кровь, лимфа, гемолимфа, целомическая жидкость), так и у многоклеточных растений. 

Важное значение воды связано также с ее химическими свойствами - как обычного вещества, вступающего в химические реакции с другими веществами. Наиболее важными являются расщепление воды под действием света (фотолиз) в световой фазе фотосинтеза, участие воды как необходимого реагента в реакциях расщепления сложных биополимеров (такие реакции не случайно называются реакциями гидролиза). И, наоборот, при реакциях образования биополимеров, полимеризации, происходит выделение воды.

 

 2.2. Вода как среда обитания

Вода имеет высокую теплоемкость (в 10 раз большую, чем железо, и в 3300 раз большую, чем воздух). В сочетании с высокой теплопроводностью это делает водную среду достаточно комфортной для обитания живых организмов. Благодаря высокой теплоемкости и теплопроводности водная среда, в отличие от воздушной, менее подвержена перепадам температур (как суточным, так и сезонным), что облегчает адаптацию животных и растений к этому абиотическому фактору.

Вода практически несжимаема. Это позволяет многим беспозвоночным животным использовать заполненные водой полости тела в качестве внутренней опоры организма при передвижении (т.н. гидростатический скелет).

Близкие по молекулярной массе вещества - метан и аммиак - при нормальных условиях являются газами. Вода же - жидкость и остается ею при нагревании до 100оС. Аномально высокая температура кипения  - результат того, что молекулы воды связаны между собою водородными связями. Именно на разрыв этих связей и тратится большое количество энергии. 
Для обитателей водной среды это также важно. Диапазон температур на планете (средняя + 7оС) практически не достигает верхней границы, точки кипения воды.

Эта характеристика, также как и высокая температура кипения, обусловлена наличием водородных связей между молекулами воды.  
Благодаря высокой теплоте парообразования живые организмы (не только животные, но и растения) получили возможность избавляться от избытков тепла в организме, испаряя воду с поверхности тела или его участков. В отличие от других способов теплообмена живых организмов с окружающей средой (излучения, конвекции, теплопередачи) испарение позволяет охлаждать тело даже в том случае, когда температура окружающей среды выше, чем температура тела.

Это свойство воды (по которому она уступает лишь ртути) не только обуславливает способность воды подниматься по тонким капиллярам (что очень важно и для водного баланса почвы, и для транспорта по сосудам растений), но и возможность использования поверхностной пленки воды для передвижения. Такие животные образуют экологическую группу нейстон, которая делится на эпинейстон (те, кто передвигаются по поверхности пленки), и гипонейстон - животных, прикрепляющихся к поверхностной пленке в воде (личинки некоторых мух и комаров).

2.3. Вода, лед, жизнь

Уникальные свойства воды, очень важные для живых организмов, проявляются в своеобразном, почти исключительном поведении воды вблизи точки замерзания. 

Общеизвестно, что с понижением температуры плотность большинства веществ возрастает, а объем, занимаемый единицей массы, соответственно уменьшается. Та же закономерность присуща и воде, если ее постепенно охлаждать, но до температуры + 3,98oC. Дальнейшее охлаждение в интервале + 4... 0оC  вызывает ее расширение.

В результате в водоемах зимой более охлажденная вода, как менее плотная, поднимается вверх, а в придонном слое сохраняется температура + 4oC. Это обеспечивает возможность нормального перенесения холодного сезона для водных организмов, в первую очередь - пойкилотермных животных.

Информация о работе Роль воды для живого