Радиоактивные отходы и отработанное ядерное топливо

Автор: Пользователь скрыл имя, 22 Ноября 2012 в 19:00, реферат

Описание работы

Согласно российскому «Закону об использовании атомной энергии» (от 21 ноября 1995 года № 170-ФЗ) радиоактивные отходы (РАО) – это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. Отходы образуются на всех стадиях работы предприятий атомной отрасли: при добыче урана, на заводах, производящих из урана ядерное топливо для атомных электростанций (АЭС), при нормальной работе АЭС, при демонтаже АЭС, выработавших свой ресурс. Отработавшее ядерное топливо (ОЯТ) большинства реакторов не перерабатывается и поэтому его возможно относить к радиоактивным отходам.

Работа содержит 1 файл

Реферат Радиоактивные отходы.doc

— 92.50 Кб (Скачать)

Оглавление

 

 

Радиоактивные отходы и отработанное ядерное топливо

Согласно российскому  «Закону об использовании атомной  энергии» (от 21 ноября 1995 года № 170-ФЗ) радиоактивные  отходы (РАО) – это ядерные материалы  и радиоактивные вещества, дальнейшее использование которых не предусматривается. Отходы образуются на всех стадиях работы предприятий атомной отрасли: при добыче урана, на заводах, производящих из урана ядерное топливо для атомных электростанций (АЭС), при нормальной работе АЭС, при демонтаже АЭС, выработавших свой ресурс. Отработавшее ядерное топливо (ОЯТ) большинства реакторов не перерабатывается и поэтому его возможно относить к радиоактивным отходам. В случае, если ОЯТ перерабатывается для получения нового ядерного топлива, большое количество отходов образуется в процессе переработки. РАО и ОЯТ производят также реакторы атомных подводных лодок и ледоколов. К РАО относятся и радиоизотопные термоэлектрические генераторы (РИТЭГи), использующих энергию распада высокоактивного стронция. Около полутора тысяч этих устройств были установлены в безлюдных местах в СССР для питания маяков и различного оборудования, но уже выработали свой ресурс и должны быть демонтированы. Содержащиеся в радиоактивных отходах вещества – плутоний, цезий, калифорний и др. – будут оставаться крайне опасными сотни и тысячи лет. Всё это время будущим поколениям нужно будет следить за тем, чтобы отходы не попали в окружающую среду и не оказались в руках террористов. Задачей первых реакторов было производство материалов для атомных бомб, в частности плутония. Период полураспада плутония (время, за которое количество опасного элемента сократится в 2 раза) – 24 тысячи лет. Плутоний губителен для всего живого. Этого элемента не существовало на Земле до начала строительства ядерных реакторов. Живые организмы в ходе эволюции не были приспособлены к этому радиоактивному элементу. Самым безопасным считается хранение РАО и ОЯТ в подземных шахтах, но даже страны, выбравшие этот способ, столкнулись с высокими затратами и прежде не учтенными рисками. На сегодня ни в одной стране мира нет хранилищ РАО, расчитанных более чем на 50 лет.

 

Опасность для  человека

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных  радикалов. Свободные радикалы вызывают разрушения целостности цепочек  макромолекул (белков и нуклеиновых  кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

Из-за того, что  разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества.

Единицей измерения  эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной  дозе любого вида излучения, поглощенной  в 1 кг биологической ткани и создающей  такой же биологический эффект, как  и поглощенная доза в 1 Гр фотонного  излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1963 года - биологический эквивалент рентгена, после 1963 года - биологический эквивалент рада - Энциклопедический словарь). 1 Зв = 100 бэр.

Эффективная доза (E) - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Эффективная доза для персонала работающего на радиоактивном производстве не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения  за всю жизнь - 70 мЗв. Планируемое  повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья. [2]

«Эффекты воздействия  радиации на человека обычно делятся  на две категории:

1) Соматические (телесные) - возникающие в организме человека, который подвергался облучению.

2) Генетические - связанные с повреждением генетического  аппарата и проявляющиеся в  следующем или последующих поколениях: это дети, внуки и более отдаленные  потомки человека, подвергшегося  облучению.

 

Таблица 1 - Воздействие  радиации на человека

Радиационные  эффекты облучения человека

Соматические  эффекты

Генетические  эффекты

Лучевая болезнь

Генные мутации

Локальные лучевые  поражения

Хромосомные аберрации

Лейкозы

 

Опухоли разных органов


 

 

Различают пороговые (детерминированные) и стохастические эффекты. Первые возникают, когда число клеток, погибших в  результате облучения, потерявших способность  воспроизводства или нормального  функционирования, достигает критического значения, при котором заметно нарушаются функции пораженных органов. Зависимость тяжести нарушения от величины дозы облучения показана в таблице 2.

 

Таблица 2 - Воздействие  различных доз радиации на человека

Воздействие различных  доз облучения на человеческий организм

Доза, Гр

Причина и результат  воздействия

(0.7 - 2) 10-3

Доза от естественных источников в год

0.05

Предельно допустимая доза профессионального облучения  в год

0.1

Уровень удвоения вероятности генных мутаций

0.25

Однократная доза оправданного риска в чрезвычайных обстоятельствах

1.0

Доза возникновения  острой лучевой болезни

3- 5

Без лечения 50% облученных умирает в течение 1-2 месяцев вследствие нарушения деятельности клеток костного мозга

10 - 50

Смерть наступает  через 1-2 недели вследствие поражений  главным образом желудочно-кишечного тракта

100

Смерть наступает  через несколько часов или  дней вследствие повреждения центральной  нервной системы


 

 Радиационное  загрязнение сопровождает все  звенья атомного топливного цикла:  добычу и переработку урана,  производство топлива для АЭС, работу АЭС, а также хранение и переработку отработавшего ядерного топлива (ОЯТ).

Так, один из самых обычных  в выбросах АЭС радионуклид «цезий-137», попадая в организм человека, вызывает саркому (одна из разновидностей раковых  заболеваний). Другой радионуклид – «стронций-90» - может замещать кальций в твердых тканях и грудном молоке. Что ведет к развитию рака крови (лейкемии), раку кости и раку груди. А малые дозы облучения «криптоном-85» повышают вероятность заболевания раком кожи.

Наибольшему воздействию радиации подвергаются работники самих ядерных объектов, а также люди, проживающие в прилегающих к ним зонах, в так называемых «закрытых административно-территориальных образованиях» (ЗАТО). Даже при строгом соблюдении всех норм радиационной безопасности, жителям таких городов свойственно раннее старение, ослабленные зрение и иммунная система, чрезмерная психологическая возбудимость и др. А распространенность врожденных аномалий среди детей в возрасте до 14 лет, проживающих в российских ЗАТО, вдвое превышает показатель по стране.

По данным самого Росатома, заболеваемость нервной системы  и органов чувств у работников атомной отрасли почти в 2 раза выше, чем у населения, проживающего рядом, например, с АЭС. Распространенность гипертонической болезни среди персонала атомных предприятий в 3 раза выше, чем в среднем по стране, а частота заболеваний костно-мышечной системы – вдвое выше, крови (1997 г.) – втрое.

В реальности же от радиационного  заражения страдают, сами того не зная, гораздо большее число людей. Даже самые малые дозы облучения вызывают необратимые генетические изменения, которые затем передаются из поколения в поколение. По оценкам американского радиобиолога Р. Бертелл, от атомной индустрии к началу 21 века генетически пострадало не менее 223 млн. человек. Радиация тем и страшна, что ставит под угрозу жизнь и здоровье сотен миллионов людей грядущих поколений, вызывая такие заболевания, как синдром Дауна, эпилепсию, дефекты умственного и физического развития.

Так называемое «вторичное загрязнение» – еще один путь распространения «ядерной заразы». Уже давно стали обычным явлением скандалы, связанные с изъятием зараженной сельскохозяйственной продукции, грибов и ягод на российских рынках.

 

Радиоактивные отходы, проблемы их захоронения

Проблема радиоактивных  отходов является частным случаем  общей проблемы загрязнения окружающей среды отходами человеческой деятельности. Но в то же время резко выраженная специфика РАО требует применения специфичных методов обеспечения  безопасности для человека и биосферы.

       Исторический опыт обращения с производственными и бытовыми отходами сформировался в условиях, когда осознание опасности отходов и программ её нейтрализации опиралось на непосредственные ощущения. Возможности последних обеспечивали адекватность осознания связей непосредственно воспринимаемых органами чувств воздействий с наступающими последствиями. Уровень знаний позволял представить логику механизмов воздействия отходов на человека и биосферу, достаточно точно соответствующую реальным процессам. К практически выработанным традиционным представлениям о методах обезвреживания отходов исторически присоединились и разработанные с открытием микроорганизмов качественно иные подходы, образовав не только эмпирически, но и научно обоснованное методическое обеспечение безопасности человека и среды его обитания. В медицине и системах управления обществом были сформированы соответствующие подотрасли, например, санитарно-эпидемиологическое дело, коммунальная гигиена и т.п.

      С бурным развитием химии и химических производств в производственных и бытовых отходах в массовых количествах появились новые, ранее не попадавшие в них элементы и химические соединения, в том числе не существующие в природе. По масштабам это явление стало сопоставимо с естественными геохимическими процессами. Человечество оказалось перед необходимостью выйти на другой уровень оценки проблемы, где должны учитываться, например, аккумулятивные и отложенные эффекты, методы выявления дозировок воздействий, необходимость применения новых методов и специальной высокочувствительной аппаратуры для обнаружения опасности и т.п.

      Качественно иную опасность, хотя и сходную с химической по некоторым из признаков, принесла человеку «радиоактивность», как явление, не воспринимаемое органами чувств человека непосредственно, не уничтожаемое известными человечеству способами и пока ещё в целом недостаточно изученное: нельзя исключить обнаружение новых свойств, воздействий и последствий этого явления. Поэтому при формировании общих и конкретных научных и практических задач «по ликвидации опасности РАО» и, в особенности, при решении этих задач возникают постоянные затруднения, показывающие, что традиционная постановка недостаточно точно отражает реальный, объективный характер «проблемы РАО». Тем не менее, идеология такой постановки широко распространена в правовых и не правовых документах общегосударственного и межгосударственного характера, которые, как можно предположить, охватывают широкий спектр современных научных воззрений, направлений, исследований и практических мероприятий; учитывают разработки всех известных отечественных и иностранных организаций, занимающихся «проблемой РАО».

      Постановлением Правительства РФ от 23.10.1995 г. № 1030 утверждена Федеральная целевая Программа «Обращение с радиоактивными отходами и отработавшими ядерными материалами, их утилизация и захоронение на 1996-2005 годы».

      Радиоактивные отходы рассматриваются в ней «как не подлежащие дальнейшему использованию вещества (в любом агрегатном состоянии), материалы, изделия, оборудования, объекты биологического происхождения, в которых содержание радионуклидов превышает уровни, установленные нормативными актами. В Программе выделен специальный раздел «Состояние проблемы», содержащий описание конкретных объектов и общественных сфер, где происходит «обращение с радиоактивными отходами», а также общие количественные характеристики «проблемы РАО» в России.

      «Большое количество накопленных некондиционированных радиоактивных отходов, недостаточность технических средств для обеспечения безопасного обращения с этими отходами и отработавшим ядерным топливом, отсутствие надёжных хранилищ для их длительного хранения и (или) захоронения повышают риск возникновения радиационных аварий и создают реальную угрозу радиоактивного  загрязнения окружающей среды, переоблучения населения и персонала организаций и предприятий, деятельность которых связана с использованием атомной энергии и радиоактивных материалов».

      Основные источники радиоактивных отходов (РАО) высокого уровня активности – атомная энергетика (отработанное ядерное топливо) и военные программы (плутоний ядерных боеголовок, отработанное топливо транспортных реакторов атомных подводных лодок, жидкие отходы радиохимических комбинатов и др.).

Информация о работе Радиоактивные отходы и отработанное ядерное топливо