Радиоактивное излучение

Автор: Пользователь скрыл имя, 06 Декабря 2011 в 15:56, реферат

Описание работы

В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин - "один распад в секунду" (расп/с). В системе СИ эта единица получила название "беккерель" (Бк). В практике радиационного контроля широко используется внесистемная единица активности - "кюри" (Ки). Один кюри - это 3,7х1010 распадов в секунду.

Работа содержит 1 файл

Реферат_2.doc

— 92.00 Кб (Скачать)
 

     Единицы радиоактивности 

     В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин - "один распад в секунду" (расп/с). В системе СИ эта единица получила название "беккерель" (Бк). В практике радиационного контроля широко используется внесистемная единица активности - "кюри" (Ки). Один кюри - это 3,7х1010 распадов в секунду.

     Концентрация  радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы. 
 

     Единицы ионизирующих излучений 

     Для измерения величин, характеризующих  ионизирующее излучение, исторически  появилась единица "рентген". Эта  единица определяется как доза рентгеновского или гамма-излучения в воздухе, при которой сопряженная корпускулярная эмиссия на 0, 001293 г воздуха производит в воздухе ионы, несущие заряд в 1 эл.ст.ед. ионов каждого знака здесь 0,001293 г - масса 1 см3 атмосферного воздуха при 0 оС и давлении 760 мм рт. ст.).

     Экспозиционная  доза - мера ионизационного действия рентгеновского или гамма-излучений, определяемая по ионизации воздуха.

     В СИ единицей экспозиционной дозы является "один кулон на килограмм" (Кл/кг). Внесистемной единицей является "рентген" (Р), 1 Р = 2,58х10-4 Кл/кг. В свою очередь 1 Кл/кг = 3,88х103 Р.

     Мощность  экспозиционной дозы - приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ - "ампер на килограмм" (А/кг). Однако в большинстве случаев на практике пользуются внесистемной единицей "рентген в секунду" (Р/с) или "рентген в час" (Р/ч).

     Поглощенная доза - энергия радиоактивного излучения, поглощенная единицей массы облучаемого вещества или человеком. Чем продолжительнее время облучения, тем больше поглощенная доза. При одинаковых условиях облучения доза зависит от состава вещества. В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица "грей" (Гр). 1 грей - это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно 1 Гр = 1 Дж/кг.

     Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного  воздействия.

     Мощность  поглощенной дозы - это приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ - "грей в секунду" (Гр/с). Это такая мощность поглощенной дозы облучения, при которой за 1 с в веществе создается доза облучения 1 Гр.

     На  практике для оценки поглощенной  дозы широко используют внесистемную единицу мощности поглощенной дозы "рад в час" (рад/ч) или "рад в секунду" (рад/с).

     Эквивалентная доза - это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов ионизирующих излучений. Определяется она по формуле: Дэкв = Q . Д, где Д - поглощенная доза данного вида излучения; Q - коэффициент качества излучения, который составляет для рентгеновского, гамма- и бета-излучений 1, для нейтронов с энергией от 0,1 до 10, для альфа - излучения с энергией менее 10 Мэв. Из приведенных данных видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают соответственно в 10 и 20 раз больший поражающий эффект.

     В системе СИ эквивалентная доза измеряется в "зивертах" (Зв).

     Бэр (биологический эквивалент рентгена) - это внесистемная единица эквивалентной дозы. Бэр - такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения. Поскольку коэффициент качества гамма-излучения равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении 1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад = 1 Р.

     Мощность  эквивалентной дозы - отношение приращения эквивалентной дозы за единицу времени и выражается в "зивертах в секунду" (Зв/с). Поскольку время пребывания человека в поле облучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в "микрозивертах в час" (мкЗв/ч).

     Согласно  заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения - при дозах выше 0,5 Зв (бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. В таблице 3 приведены дозиметрические величины и единицы их измерения.

         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Понятие радиоактивности. Типы излучений.  

     Радиоактивность – способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц.  

     Радиоактивность подразделяют на естественную (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, полученных посредством ядерных реакций).  

     Радиоактивное излучение разделяют на три типа:

     a-излучение – отклоняется электрическим и магнитными полями, обладает высокой ионизирующей способностью и малой проникающей способностью; представляет собой поток ядер гелия; заряд a-частицы равен +2е, а масса совпадает с массой ядра изотопа гелия 42Не.

     b-излучение – отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (приблизительно на два порядка), а проникающая способность гораздо больше, чем у a-частиц; представляет собой поток быстрых электронов.

     g-излучение – не отклоняется электрическим и магнитными полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью; представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны l < 10-10 м и вследствие этого – ярко выраженными корпускулярными свойствами, то есть является поток частиц - g-квантов (фотонов).        

     Период  полураспада Т1/2 – время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое.   
 

     3. Воздействие радиационного излучения  на живые организмы.   

     Существует  несколько путей поступления  радиоактивных веществ в организм: при вдыхании воздуха,  загрязненного радиоактивными веществами,  через зараженную пищу или воду,  через кожу,  а также при заражении открытых ран. Наиболее опасен первый путь, поскольку во-первых, объем легочной вентиляции очень большой, а во-вторых, значения коэффициента усвоения в легких более высоки.

     Излучения радиоактивных веществ оказывает  очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001 °С, нарушает жизнедеятельность клеток.

     При попадании радиоактивных веществ  в организм любым путём они  уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается.

     В основе повреждающего действия ионизирующих излучений лежит комплекс взаимосвязанных процессов. Ионизация и возбуждение атомов и молекул дают начало образованию высокоактивных радикалов, вступающих в последующем в реакции с различными биологическими структурами клеток. В повреждающем действии радиации важное значение имеют возможный разрыв связей в молекулах за счет непосредственного действия радиации и внутри- и межмолекулярной передачи энергии возбуждения. Физико-химические процессы, протекающие на начальных этапах, принято считать первичными – пусковыми. В последующем развитие лучевого поражения проявляется в нарушении обмена веществ с изменением соответствующих функций органов. Малодифференцированные, молодые и растущие клетки наиболее радиочувствительны.         

     Животные  и растительные организмы характеризуются  различной радиочувствительностью, причины которой до сих пор полностью ещё не выяснены. Как правило, наименее чувствительны одноклеточные растения, животные и бактерии, а наиболее чувствительны – млекопитающие животные и человек. Различие в чувствительности к радиации имеет место у отдельных особей одного и того же вида.  Она зависит от физиологического состояния организма, условий его существования и индивидуальных особенностей. Более чувствительны к облучению новорожденные и старые особи. Различного рода заболевания, воздействие других вредных факторов отрицательно сказывается на течении радиационных повреждений.        

     Изменения, развивающиеся в органах и  тканях облучённого организма, называют соматическими. Различают ранние соматические эффекты, для которых характерна чёткая дозовая зависимость, и поздние – к которым относят повышение риска развития опухолей (лейкозов), укорочение продолжительности жизни и разного рода нарушения функции органов. Специфических новообразований, присущих только ионизирующей радиации, нет. Существует тесная связь между дозой, выходом опухолей и длительностью латентного периода. С уменьшением дозы частота опухолей падает, а латентный период увеличивается.         

     В отдалённые сроки могут наблюдаться  и генетические (врождённые уродства, нарушения, передающиеся по наследству), повреждения, которые наряду с опухолевыми эффектами являются стохастическими. В основе генетических эффектов облучения лежит повреждение клеточных структур, ведающих наследственностью – половых яичников и семенников.        

     Промежуточное место между соматическими и  генетическими повреждениями занимают эмбриотоксические эффекты -  пороки развития – последствия облучения плода. Плод весьма чувствителен облучению, особенно в период органогенеза (на 4-12 неделях беременности у человека). Особенно чувствительным является мозг плода (в этот период происходит формирование коры).

     Радиация  очень опасна для людей и для  последующего потомства. Так, например, вероятность заболеть раком легких на каждую единицу дозы облучения для шахтеров урановых рудников оказалась в 4-7 раз выше, чем для людей, переживших атомную  бомбардировку. Следовательно проблема разработки средств защиты от радиации очень актуальна в наше время. И хотя в материалах некоторых обследований содержится вывод о том, что у облученных родителей больше шансов родить ребенка с синдромом дауна, другие исследования этого не подтверждают. Несколько настораживает сообщение о том, что у людей, получающих малые дозы облучения, действительно наблюдается повышенное содержание клеток крови с хромосомными нарушениями.  

     Согласно  оценкам, полученным при первом подходе, доза в 1 Гр., полученная при низком уровне радиации только особями мужского пола, индуцирует  появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных. Оценки, полученные для особей женского пола, гораздо менее определенны, но явно ниже; это объясняется тем, что женские половые клетки менее чувствительны к действию радиации. Согласно ориентировочным оценкам, частота мутаций составляет от 0 до 900, а частота хромосомных аберраций от 0 до 300 случаев на миллион живых новорожденных.    
 

     1). Дозы излучения и единицы их измерения.

     Эффект  облучения зависит от величины поглощенной дозы, её мощности, объёма облученных тканей и органов, вида излучения. Снижение мощности дозы излучения уменьшает биологический эффект. Различия связаны с возможностью восстановления поврежденного облучением организма. С увеличением мощности дозы значимость восстановительных процессов снижается.        

     Поглощённая доза излучения измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества. Единица поглощённой дозы – грей (Гр), равный 1 джоулю, поглощённому 1 кг вещества (1 Гр = 1Дж/кг = 100 рад)          

     Эффект  биологического действия излучений  зависит также от пространственного  распределения поглощённой энергии, которая характеризуется линейной передачей энергии (ЛПЭ), что учитывается при оценке различных видов излучения показателем относительной биологической эффективности (ОБЭ). При этом ОБЭ рентгеновского и g-излучения принимают равной 1.                                   
 
 
 
 

     Доза  рентгеновского излучения (180-250 кэВ)                               

     вызывающая данный эффект      

     ОБЭ =    ______________________________________________________                               

     Поглощённая доза любого другого                        

     вида  излучения, вызывающая такой же эффект          

     ОБЭ зависит не только от ЛПЭ излучений, но и от ряда физических и биологических факторов, например, от величины дозы, кратности облучения и др. По предложению Международной комиссии по радиологическим единицам, показатель ОБЭ для оценки различных видов излучения используется только в радиобиолигии. Для решения задач радиационной защиты предложен коэффициент качества излучения k, зависящий от ЛПЭ           
 

Информация о работе Радиоактивное излучение