(112) % где Cfat, Cgl, Cprt — соответственно содержание жиров, углеводов и белков, г на 1 г беззольного вещества осадка. При отсутствии данных о химическом составе осадка величину Rlim допускается принимать: для осадков из первичных отстойников — 53 %; для избыточного активного ила — 44 %; для смеси осадка с активным илом — по среднеарифметическому соотношению смешиваемых компонентов по беззольному веществу. 6.354. Весовое количество газа, получаемого при сбраживании, надлежит принимать 1 г на 1 г распавшегося беззольного вещества загружаемого осадка, объемный вес газа — 1 кг/м3, теплотворную способность — 5000 ккал/м3. 6.365. Влажность осадка, выгружаемого из метантенка, следует принимать в зависимости от соотношения загружаемых компонентов по сухому веществу с учетом распада беззольного вещества, определяемого согласно п. 6.352. 6.356. При проектировании метантенков надлежит предусматривать: мероприятия по взрывопожаробезопасности оборудования и обслуживающих помещений — в соответствии с ГОСТ 12.3.006-75; герметичные резервуары метантенков, рассчитанные на избыточное давление газа до 5 кПа (500 мм вод. ст.); число метантенков — не менее двух, при этом все метантенки должны быть рабочими; отношение диаметра метантенка к его высоте (от днища до основания газосборной горловины) — не более 0,8—1; расположение статического уровня осадка — на 0,2 — 0,3 м выше основания горловины, а верха горловины — на 1,0 — 1,5 м выше динамического уровня осадка; площадь газосборной горловины — из условия пропуска 600—800 м3 газа на 1 м2 в сутки; расположение открытых концов труб для отвода газа из газового колпака — на высоте не менее 2 м от динамического уровня; загрузку осадка в верхнюю зону метантенка и выгрузку из нижней зоны; систему опорожнения резервуаров метантенков — с возможностью подачи осадка из нижней зоны в верхнюю; переключения, обеспечивающие возможность промывки всех трубопроводов; перемешивающие устройства, рассчитанные на пропуск всего объема бродящей массы в течение 5—10 ч; герметически закрывающиеся люки-лазы, смотровые люки; расстояние от метантенков до основных сооружений станций, внутриплощадочных автомобильных дорог и железнодорожных путей — не менее 20 м, до высоковольтных линий — не менее 1,5 высоты опоры; ограждение территории метантенков. 6.357. Газ, получаемый в результате сбраживания осадков в метантенках, надлежит использовать в теплоэнергетическом хозяйстве очистной станции и близрасположенных объектов. 6.368. Проектирование газового хозяйства метантенков (газосборных пунктов, газовой сети, газгольдеров и т. п.) следует осуществлять в соответствии с „Правилами безопасности в газовом хозяйстве" Госгортехнадзора СССР. 6.359. Для регулирования давления и хранения газа следует предусматривать мокрые газгольдеры. вместимость которых рассчитывается на 2 — 4-часовой выход газа, давление газа под колпаком 1,5—2,5 кПа (150 — 250 мм вод. ст.). 6.360. При обосновании допускается применение двухступенчатых метантенков в районах со среднегодовой температурой воздуха не ниже 6 °С и при ограниченности территории для размещения иловых площадок. 6.361. Метантенки первой ступени надлежит проектировать на мезофильное сбраживание согласно пп. 6.347 — 6.356. 6.362. Метантенки второй ступени надлежит проектировать в виде открытых резервуаров без подогрева. Выпуск иловой воды следует предусматривать на разных уровнях по высоте сооружения, удаление осадка — из сборного приямка по иловой трубе диаметром не менее 200 м под гидростатическим напором не менее 2 м. Вместимость метантенков второй ступени следует рассчитывать исходя из дозы суточной загрузки, равной 3 — 4 %. Метантенк второй ступени следует оборудовать механизмами для удаления накапливающейся корки. 6.363. Влажность осадка, удаляемого из метантенков второй ступени, следует принимать, %, при сбраживании: осадка из первичных отстойников — 92; осадка совместно с избыточным активным илом — 94. 2.3. Стандарты безопасности. ЭЛЕКТРООБОРУДОВАНИЕ, ТЕХНОЛОГИЧЕСКИЙ КОНТРОЛЬ, АВТОМАТИЗАЦИЯ И СИСТЕМЫ ОПЕРАТИВНОГО УПРАВЛЕНИЯ ОБЩИЕ УКАЗАНИЯ 7.1. Категории надежности электроснабжения электроприемников сооружений систем канализации следует определять по Правилам устройства электроустановок (ПУЭ) Минэнерго СССР. Категория надежности электроснабжения насосных и воздуходувных станций должна соответствовать их надежности действия и приниматься по п. 5.1. 7.2. Выбор напряжения электродвигателей следует производить в зависимости от их мощности, принятой схемы электропитания и с учетом перспективы развития проектируемого объекта. Выбор исполнения электродвигателей должен зависеть от окружающей среды. При выборе электродвигателей, как правило, следует учитывать возможную комплектацию. Компенсация реактивной мощности должна выполняться в соответствии с требованиями „Руководящих указаний по компенсации реактивной мощности" Минэнерго СССР. 7.3. Распределительные устройства, трансформа торные подстанции и щиты управления для сооружений с нормальной средой следует размещать во встраиваемых или пристраиваемых к сооружению помещениях и учитывать возможность их расширений и увеличения мощности. При сооружении подстанции глубокого ввода напряжением 110 или 35 кВ для питания очистных сооружений распределительное устройство подстанции на 6—10 кВ рекомендуется совмещать с распределительным устройством очистных сооружений. В насосных станциях допускается установка закрытых щитов в машинном зале на полу или балконе при условии принятия мер, исключающих попадание на них воды и затопление при аварии. 7.4. Классификацию взрывоопасных зон помещений и смежных с взрывоопасной зоной других помещений, а также категории и группы взрывоопасной смеси следует принимать в соответствии с ПУЭ-76, ГОСТ 12.1.011-78 и СН 463-74. 7.5. Электродвигатели, пусковые устройства и приборы на сооружениях для обработки и перекачки сточных вод, содержащих легковоспламеняющиеся. взрывоопасные вещества, следует принимать в соответствии с ПУЭ-76 и ГОСТ 12.2.020-76. Предусматривать установку двигателей внутреннего сгорания в этих насосных станциях запрещается. 7.6. В системах технологического контроля необходимо предусматривать: средства и приборы постоянного контроля; средства периодического контроля, например, для наладки и проверки работы сооружений. 7.7. Технологический контроль качественных параметров сточных вод допускается осуществлять путем непрерывного инструментального контроля с помощью промышленных приборов и анализаторов или лабораторными методами. 7.8. В конструкциях сооружений следует предусматривать узлы, закладные детали, проемы, камеры и прочие устройства для установки средств электрооборудования и автоматизации, на соединительных линиях — защиту от засорения (разделительные мембраны, продувку или промывку соединительных линий и др.). 7.9. Объем автоматизации и степень оснащения сооружений средствами технологического контроля необходимо устанавливать в зависимости от условий эксплуатации, обосновывать технико-экономическими расчетами с учетом социальных факторов. Автоматизацию следует выполнять по заданным технологическим параметрам или в отдельных случаях по временной программе. В первую очередь автоматизации подлежат насосные установки. 7.10. Для обеспечения централизованного управления и контроля работы сооружений следует предусматривать диспетчерское управление системой канализации, использующее в необходимых случаях средства телемеханики. 7.11. Для крупных систем канализации в тех случаях, когда на объектах, которым они подведомственны, функционируют автоматизированные системы управления технологическими процессами (АСУТП), следует предусматривать подсистемы, обеспечивающие сбор, обработку и передачу необходимой информации, а также решение отдельных задач по управлению. 7.12. Диспетчерское управление должно предусматриваться, как правило, одноступенчатое с одним диспетчерским пунктом. Для наиболее крупных канализационных систем со сложными сооружениями и большими расстояниями между ними допускается двухступенчатое управление с центральным и местным диспетчерскими пунктами. 7.13. Связь между диспетчерским пунктом и контролируемыми объектами, а также помещениями дежурного персонала и мастерскими следует осуществлять посредством прямой диспетчерской связи. Следует, как правило, предусматривать прямую диспетчерскую связь между диспетчерским пунктом канализации и диспетчерским пунктом энергохозяйства промышленного предприятия, а в случае его отсутствия — с центральным диспетчерским пунктом промышленного предприятия. 7.14. С контролируемых сооружений на диспетчерский пункт должны передаваться только те сигналы и измерения, без которых не могут быть обеспечены оперативное управление и контроль работы сооружений, скорейшая ликвидация и локализация аварий. 7.15. На диспетчерский пункт очистных сооружений следует передавать следующие измерения и сигнализацию. Измерения: расхода сточных вод, поступающих на очистные сооружения, или расхода очищенных сточных вод; рН сточных вод (при необходимости); концентрации растворенного кислорода в сточных водах (при необходимости); температуры сточных вод; общего расхода воздуха, подаваемого на аэротенки; расхода активного ила, подаваемого на аэротенки; расхода избыточного активного ила; расхода сырого осадка, подаваемого на сооружения по его обработке. Сигнализация: аварийного отключения оборудования; нарушения технологического процесса; предельных уровней сточных вод и осадков в резервуарах, в подводящем канале здания решеток или решеток-дробилок; предельной концентрации взрывоопасных газов в производственных помещениях; предельной концентрации хлор-газа в помещениях хлораторной. 7.16. Помещения диспетчерских пунктов допускается блокировать с технологическими сооружениями: производственно-административным корпусом, воздуходувной станцией и др. (при размещении диспетчерского пункта в воздуходувной станции его следует изолировать от шума). В диспетчерских пунктах следует предусматривать следующие помещения: диспетчерскую для размещения диспетчерского щита, пульта и средств связи с постоянным пребыванием дежурного персонала; вспомогательные помещения (кладовую, ремонтную мастерскую, комнату отдыха, санузел). ОЧИСТНЫЕ СООРУЖЕНИЯ 7.27. Работу механизированных решеток следует автоматизировать по заданной программе или по максимальному перепаду уровня жидкости до и после решетки. 7.28. В песколовках при высоком уровне автоматизации очистных сооружений следует автоматизировать удаление песка по заданной программе, устанавливаемой при эксплуатации. 7.29. В первичных отстойниках (радиальных или горизонтальных) следует автоматизировать периодический вы пуск осадка поочередно из каждого отстойника по заданным программе или уровню осадка с учетом пуска скребковых механизмов. 7.30. В усреднителях необходимо контролировать на выходе величину рН или другие параметры, требуемые по технологии. 7.31. В сооружениях, в которых используется сжатый воздух (усреднителях, аэрируемых песколовках, преаэраторах и биокоагуляторах), следует контролировать расход воздуха. 7.32. В аэротенках следует контролировать расходы иловой смеси, активного ила и воздуха на каждой секции, а при высоком уровне автоматизации следует регулировать подачу воздуха по величине растворенного кислорода в сточной воде. 7.33. В высоконагружаемых биофильтрах следует контролировать расход поступающей и рециркуляционной воды. 7.34. Во вторичных отстойниках следует автоматизировать поддержание заданного уровня ила, контролировать работу илососов. 7.35. В илоуплотнителях следует автоматизировать выпуск уплотненного ила по заданным программе или уровню ила. 7.36. В метантенках необходимо автоматизировать поддержание заданной температуры осадка внутри метантенка, контролировать температуру осадка внутри метантенка, уровень загрузки, расходы поступающего осадка, пара и газа, давление пара и газа. 7.37. На вакуум-фильтрах и фильтр-прессах следует автоматизировать дозирование подаваемых реагентов, контролировать уровень осадка в корыте вакуум-фильтра, разрежение в ресивере, давление сжатого воздуха, уровень воды в ресивере. 7.38. В сточной воде после контакта с хлором следует контролировать концентрацию остаточного хлора. 7.39. Автоматизацию технологических процессов обработки производственных сточных вод и необходимый объем контроля следует принимать по данным научно-исследовательских организаций. ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ 8.12. Необходимый воздухообмен в производственных помещениях надлежит, как правило, рассчитывать по количеству вредных выделений от оборудования, арматуры и коммуникаций. Количество вредных выделений следует принимать по данным технологической части проекта. Очистные сооружения 9.33. Строительные конструкции зданий и сооружений надлежит принимать согласно СНиП II-18-76 и СНиП 2.04.02-84. 9.34. Условия спуска сточных вод в водные объекты должны удовлетворять требованиям „Правил охраны поверхностных вод от загрязнения сточными водами" и „Правил санитарной охраны прибрежных вод морей", при этом необходимо учитывать низкую самоочищающую способность водных объектов, их полное перемерзание или резкое сокращение расходов в зимний период. 9.35. Для очистки сточных вод могут быть применены биологический, биолого-химический, физико-химический методы. Выбор метода очистки должен быть определен его технико-экономическими показателями, условиями сброса сточных вод в водные объекты, наличием транспортных связей и степенью освоения района, типом населенного места (постоянный, временный), наличием реагентов и т. п. 9.36. При выборе метода и степени очистки следует учитывать температуру сточных вод, холостые сбросы водопроводной воды, изменения концентрации загрязняющих веществ за счет разбавления. Среднемесячную температуру сточных вод Tw, °С, при подземной прокладке канализационной сети следует определять по формуле (120) где Twot — среднемесячная температура воды в водоисточнике, °С; y1 — эмпирическое число, зависящее от степени благоустройства населенного места. Для районов застройки, не имеющих централизованного горячего водоснабжения, y1 = 4—5; для районов, имеющих систему централизованного горячего водоснабжения в отдельных группах зданий, y1 = 7—9; для районов, где здания оборудованы централизованным горячим водоснабжением, y1 = 10—12. 9.37. Расчетную температуру сточных вод в месте выпуска следует определять теплотехническим расчетом. 9.38. Биологическую очистку сточных вод надлежит предусматривать только на искусственных сооружениях. 9.39. Обработку осадка следует осуществлять. как правило, на искусственных сооружениях. 9.40. Намораживание осадка с последующим его оттаиванием надлежит предусматривать в специальных накопителях при производительности очистных сооружений до 3—5 тыс. м3/сут. Высота слоя намораживания осадка не должна превышать глубину сезонного оттаивания. 9.41. Размещение очистных сооружении следует предусматривать, как правило, в закрытых отапливаемых зданиях при производительности до 3—5 тыс. м3/сут. При большей производительности и соответствующих теплотехнических расчетах очистные сооружения могут располагаться на открытом воздухе с обязательным устройством над ними шатров, проходных галерей и т. п. При этом необходимо предусматривать мероприятия по защите сооружений, механических узлов и устройств от обледенения. 9.42. Очистные сооружения следует применять высокой индустриальной сборности или заводской готовности, обеспечивающие минимальное привлечение человеческого труда при простом управлении: тонкослойные отстойники, многокамерные аэротенки, флототенки, аэротенки с высокими дозами ила, флотационные илоотделители, аэробные стабилизаторы осадка и т. п. 9.43. Для очистки небольших количеств сточных вод следует применять установки: аэрационные, работающие по методу полного окисления (до 3 тыс. м3/сут); аэрационные с аэробной стабилизацией избыточного активного ила (от 0,2 до 5 тыс. м3/сут); физико-химической очистки (от 0,1 до 5 тыс. м3/сут). 9.44. Установки физико-химической очистки предпочтительней для вахтовых и временных поселков, профилакториев и населенных пунктов, отличающихся большой неравномерностью поступления сточных вод, низкой температурой и концентрацией загрязняющих веществ. 9.45. Для физико-химической очистки сточных вод допускается применять следующие схемы: I — усреднение, коагуляция, отстаивание, фильтрование, обеззараживание; II — усреднение, коагуляция, отстаивание, фильтрование, озонирование. Схема I обеспечивает снижение БПКполн от 180 до 15 мг/л, схема II — от 335 до 15 мг/л за счет окисления озоном оставшихся растворенных органических веществ с одновременным обеззараживанием сточных вод. 9.46. В качестве реагентов следует применять сернокислый алюминий с содержанием активной части не менее 15 %, активную кремнекислоту (АК), кальцинированную соду, гипохлорит натрия, озон. В схеме I сода и озон исключаются. 9.47. Дозы реагентов надлежит принимать, мг/л: сернокислого безводного алюминия — 110—100, АК — 10—15, хлора — 5 (при подаче в отстойник) или 3 (перед фильтром), озона — 50—55, соды — 6—7. 3. Технико-экономические показатели установки Производительность линии по исходному продукту, кг/час 1500 Потребляемая электроэнергия, квт/час 450 Производственная площадь (без складских помещений), кв.м 350 Численность обслуживающего персонала, чел. 10 Температура охлаждения резины, 0 С минус 80-90 Характеристика получаемого продукта и возможные направления его использования Резиновая крошка 0,2 – 0,5 мм - резиновые и пластмассовые смеси, добавка в рецептуру новых шин до 10% в качестве замены каучука Резиновая крошка 0,8 мм - производство регенерата термо-механическим методом Резиновая крошка 1,0 мм - асфальто-бетонные смеси Резиновая крошка 1,4 мм - производство гидроизоляционных и строительных материалов и изделий (спортивные покрытия, рекортон, рекофлекс, резиновый шифер, различные мастики, гидроизоляция трубопроводов) Текстильный корд используется для производства теплоизолирующих плит. Металлический корд после отжига резины сдается на металлолом. Для примера, цена одного нового колеса карьерного самосвала (в зависимости от грузоподъемности) составляет 8000$ - 20000$, а восстановление методом холодной вулканизации обходится в 2 - 5 раз дешевле. Шины легковых автомобилей, в виду их большего распространения и при том значительно меньшей стоимости, восстанавливать не всегда выгодно, поэтому целесообразно их утилизовывать для получения гранулята или использывать их как вторичный энергоресурс. Вывод: В данной курсовой работе мы показали почему проблема переработки изношенных автомобильных шин и вышедших из эксплуатации резинотехнических изделий имеет большое экологическое и экономическое значение для всех развитых стран мира. Невосполнимость природного нефтяного сырья диктует необходимость использования вторичных ресурсов с максимальной эффективностью, т.е. в место гор мусора мы могли бы получить новую для нашего региона отрасль промышленности - коммерческую переработку отходов. Результаты экспериментов показали, что дробление при низких температурах значительно уменьшает энергозатраты на дробление, улучшает отделение металла и текстиля от резины, повышает выход резины. Во всех известных установках для охлаждения резины используется жидкий азот. Но сложность его доставки, хранения, высокая стоимость и высокие энергозатраты на его производство являются основными причинами, сдерживающими в настоящее время внедрение низкотемпературной технологии. Предлагаемая технологическая линия позволяет перерабатывать шины как с текстильным, так и с металлическим кордом. Также следует отметить высокую степень очистки: от металла – 0,01%, от текстиля – 0,1%. Утилизация непрерывно накапливаемых автомобильных, сельскохозяйственных и других видов шин – острая экологическая проблема в большинстве стран. Эти изделия не подвергаются естественному разложению, при сжигании они выделяют ядовитые сернистые соединения, складирование их создает дополнительные трудности: · большие территории используются под свалки; · на свалках возникают гнездовые места для грызунов и вредных насекомых – возбудителей и переносчиков опасных заболеваний; · свалки старых шин являются пожароопасными областями; · невозможность использования ценного материала, содержащегося в изношенных шинах, для производства новых товаров; Список использованной литературы. 1. СНиП 2.04.03-85. Канализация. Наружные сети и сооружения. Госстрой СССР.- М.: ЦИПТ Госстроя СССР, 1986.-72с. 2. Проектирование сооружений для очистки сточных вод. Справочное пособие к СНиП.-М.:Стройиздат, 1990.-192 с. 3. Кульский Л.А. Теоретические основы и технология кондиционирования воды. Процессы и аппараты.-Киев.: Наук.думка, 1983.-523с. 4. Технология и оборудование для очистки промышленных и бытовых стоков.: Альбом ВНИИТЭМР.-М., 1992-63 с. 5. Пальгунов П.П., Сумароков М.В. Утилизация промышленных отходов.-М.: Стройиздат, 1990-352 с. 6. Охрана окружающей среды. (Справочное пособие).-М.:Изд-во стандартов, 1991.- 127 с. 7. Аникиев В.В., Захарова П.В. и др. Инженерная защита окружающей среды. Очистка вод. Утилизация отходов.-М.: Изд-во ассоциации строительныхвузов, 2002.- 295 с. |