Автор: Пользователь скрыл имя, 01 Ноября 2011 в 12:20, реферат
Введение
Среди многих отраслей современной техники, направленных на повышение уровня жизни людей, благоустройства населенных мест и развития промышленности, водоснабжение занимает большое и почетное место. Ведь вода – это непременная часть всех живых организмов, жизнедеятельность которых без воды невозможна. Для нормального течения физиологических процессов в организме человека и для создания благоприятных условий жизни людей очень важно гигиеническое значение воды. В настоящее время обеспечение населения водой высокого качества стало настоящей проблемой.
Проблема питьевого водоснабжения затрагивает очень многие стороны жизни человеческого общества в течение всей истории его существования. В настоящее время это проблема социальная, политическая, медицинская, географическая, а также инженерная и экономическая. На питьевые и бытовые потребности населения, коммунальных объектов, лечебно-профилактических учреждений, а также на технологические нужды предприятий пищевой промышленности расходуется около 5-6% общего водопотребления. Питьевая вода – это вода, отвечающая по своему качеству в естественном состоянии или после обработки (очистки, обеззараживания) установленным нормативным требованиям и предназначенная для питьевых и бытовых нужд человека. Основные требования к качеству питьевой воды: быть безопасной в эпидемическом и радиационном отношении, быть безвредной по химическому составу, обладать благоприятными органолептическими свойствами. Для удовлетворения этих требований в настоящее время используется целый комплекс мер по подготовке питьевой воды.
Введение.
1. Гигиенические задачи обеззараживания питьевой воды.
2. Реагентные (химические) методы обеззараживания питьевой воды.
2.1 Хлорирование.
2.2 Хлор.
2.3Диоксид хлора.
2.4Озонирование.
2.5 Другие реагентные способы дезинфекции воды.
3. Физические методы обеззараживания питьевой воды.
3.1 Кипячение.
3.2 Ультрафиолетовое облучение.
3.3 Другие физические методы.
Заключение.
Список литературы.
Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.
К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.
Применение активных
углей и катионитов, насыщенных серебром,
например, С-100 Ag или С-150 Ag фирмы « Purolite
», преследует цели не «серебрения» воды,
а предотвращения развития микроорганизмов
при прекращении движения воды. При остановках
создаются идеальные условиях для их размножения
– большое количество органики, задержанное
на поверхности частиц, их огромная площадь
и повышенная температура. Наличие серебра
в структуре этих частиц резко уменьшает
вероятность обсеменения слоя загрузки.
Серебросодержащие катиониты разработки
ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат
в себе значительно большее количество
серебра и предназначены для обеззараживания
воды в установках небольшой производительности.
3.
Физические методы
обеззараживания
питьевой воды
3.1
Кипячение
Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение.
При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения.
Кроме того, при
кипячении воды удаляются растворенные
в ней газы и уменьшается жесткость.
Вкусовые качества воды при кипячении
меняются мало. Правда для надежной
дезинфекции рекомендуется кипятить
воду в течение 15 - 20 минут, т.к. при кратковременном
кипячении некоторые микроорганизмы,
их споры, яйца гельминтов могут сохранить
жизнеспособность (особенно если микроорганизмы
адсорбированы на твердых частицах). Однако
применение кипячения в промышленных
масштабах, конечно же, не представляется
возможным ввиду высокой стоимости метода.
3.2
Ультрафиолетовое
излучение
Обработка УФ-излучением – перспективный промышленный способ дезинфекции воды. При этом применяется свет с длиной волны 254 нм (или близкой к ней), который называют бактерицидным. Дезинфицирующие свойства такого света обусловлены их действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. При этом бактерицидный свет уничтожает не только вегетативные, но и споровые формы бактерий.
Современные установки
УФ-обеззараживания имеют
Этот способ
приемлем как в качестве альтернативы,
так и дополнения к традиционным
средствам дезинфекции, поскольку
абсолютно безопасен и
Важно отметить, что в отличие от окислительных способов при УФ-облучении не образуются вторичные токсины, и поэтому верхнего порога дозы ультрафиолетового облучения не существует. Увеличением дозы почти всегда можно добиться желаемого уровня обеззараживания.
Кроме того УФ-облучение не ухудшает органолептические свойства воды, поэтому может быть отнесено к экологически чистым методам ее обработки.
Вместе с тем, и этот способ имеет определенные недостатки. Подобно озонированию, УФ-обработка не обеспечивает пролонгированного действия. Именно отсутствие последействия делает проблематичным ее применение в случаях, когда временной интервал между воздействием на воду и ее потреблением достаточно велик, например в случае централизованного водоснабжения. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.
Кроме того, возможны реактивация микроорганизмов и даже выработка новых штаммов, устойчивых к лучевому поражению.
Этот способ требует строжайшего соблюдения технологии,
Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззараживание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки. Фактором, снижающим эффективность работы установок УФ-обеззараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка. Другим фактором, снижающим эффективность УФ-обеззараживания, является мутность исходной воды. Рассеивание лучей значительно ухудшает эффективность обработки воды.
3.3 Электроимпульсный способ
Достаточно новым способом обеззараживания воды является электроимпульсный способ - использование импульсивных электрических разрядов (ИЭР).
Сущность метода заключается в возникновении электрогидравлического удара, так называемого эффекта Л. А. Юткина.
Технологический процесс состоит из шести ступеней:
подача жидкости
в рабочий объём при
усиление эффекта разрушения микроорганизмов за счет формирования волн растяжения при отражении волн сжатия, образованных электрическим разрядом от свободной поверхности жидкости,
подавление или гашение ударных волн в подводящих и отводящих жидкость магистралях для исключения их разрушения,
отведение обеззараженной жидкости из рабочего объёма.
Кроме того, в частном случае возможно инициирование электрических разрядов в объеме, отделенном от рабочего объема средой, сохраняющей или увеличивающей амплитуду волн сжатия. Примером материала, являющегося средой, сохраняющей амплитуду волны на границе с водой, может быть пенополистирол.В процессе обеззараживания питьевой воды электроимпульсным способом происходит большое количество явлений: мощные гидравлические процессы, образование ударных волн сверхвысокого давления, образование озона, явления кавитации, интенсивные ультразвуковые колебания, возникновение импульсивных магнетических и электрических полей, повышение температуры. Результатом всех этих явлений является уничтожение в воде практически всех патогенных микроорганизмов. Очень важно заметить, что вода, обработанная ИЭР, приобретает бактерицидные свойства, которые сохраняются до 4 мес.
Основным преимуществом
электроимпульсного способа обеззараживания
питьевой воды является экологическая
чистота, а так же возможность
использования в больших
3.4 Другие физические методы
К физико-химическим
методам обеззараживания воды следует
отнести использование с этой
целью ионообменных смол. G.Gillissen (1960)
показал способность
Помимо указанных
выше физических факторов изучалась
возможность обеззараживания
Заключение
Защита водных ресурсов от истощения и загрязнения и их рациональное использование для нужд народного хозяйства – одна из наиболее важных проблем, требующих безотлагательного решения.
Предприятия, осуществляющие забор воды из водоисточников, ее очистку, по уровню решаемых задач и обороту денежных средств занимают одно из ведущих мест в регионе. А стало быть эффективность использования материальных ресурсов в данной отрасли так или иначе сказывается на общем уровне благосостояния и здоровья людей, проживающих на данной территории. Рациональное, т.е. организованное с соблюдением санитарных правил и нормативов, питьевое водоснабжение помогает избегать различных эпидемий, кишечных инфекций. Химический состав питьевой воды также немаловажен для здоровья человека.В современных условиях обеззараживание стало чуть ли не единственным обязательным процессом в многоступенчатой системе очистки воды питьевого водоснабжения. Коагулирование и фильтрование воды через песок освобождают ее от суспендированных примесей и частично снижают ее бактериальную загрязненность. Но только обеззараживанием воды можно на 98% очистить воду от патогенных (болезнетворных ) микроорганизмов.
Постоянное совершенствование
методов и средств, с помощью
которых осуществляется дезинфекция,
вызвано двумя факторами: развитием
у микроорганизмов
В связи с этим поиск и внедрение наиболее рационального способа обеззараживания воды из проблемы актуальной переходит в раздел социально значимых.
Постоянное совершенствование
дезинфицирующих средств
Питьевая вода – это важнейший фактор здоровья и благополучия человека.
Мировой и отечественный опыт доказывает, что при использовании передовых технологий и оборудования качество воды (практически независимо от исходных ее характеристик) начинает соответствовать самым строгим нормативным требованиям. Это позволяет не только эффективно использовать естественные источники, но и успешно применять схемы рециркуляции. Такой подход, несомненно, поможет снизить антропогенную нагрузку с окружающей среды и сберечь ее для потомков.
Проблема обеззараживания
воды стоит сегодня тем более
остро, что качество ее в природных
источниках неуклонно ухудшается. В государственном
докладе «Вода питьевая» отмечено, что
около 70 % рек и озер страны утратили свое
качество как источники водоснабжения,
а приблизительно 30 % подземных источников
подверглись природному или антропогенному
загрязнению. Около 22 % проб питьевой воды,
отбираемых из водопроводов, не отвечают
гигиеническим требованиям по санитарно-химическим
нормам, а более 12 % – по микробиологическим
показателям.