Круговорот веществ и биогеохимические циклы важнейших химических элементов в биосфере

Автор: Пользователь скрыл имя, 17 Марта 2013 в 20:09, доклад

Описание работы

Круговорот воды, а также круговорот биогенных элементов, обусловленный синтезом и распадом органических веществ в биосфере называют круговоротом веществ. Это многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере. Деятельность живых организмов сопровождается извлечением из окружающей их неживой природы больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает круговорот веществ в природе, т.е. циркуляция веществ между атмосферой, гидросферой, литосферой и живыми организмами. Таким образом накапливаются полезные ископаемые - уголь, нефть, газ, известняки и т.п.

Работа содержит 1 файл

Биогеохимические циклы.docx

— 31.27 Кб (Скачать)

Круговорот  веществ и биогеохимические циклы  важнейших химических элементов  в биосфере

В великом природном круговороте 
к нам постоянно возвращается та 
же самая вода. Глоток воды из горной 
речушки содержит капли из колодцев 
Авраама, купальни Клеопатры и 
системы охлаждения ядерного реактора.

Рольф Эдберг

Круговорот воды, а также  круговорот биогенных элементов, обусловленный синтезом и распадом органических веществ в биосфере называют круговоротом веществ. Это многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере. Деятельность живых организмов сопровождается извлечением из окружающей их неживой природы больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает круговорот веществ в природе, т.е. циркуляция веществ между атмосферой, гидросферой, литосферой и живыми организмами. Таким образом накапливаются полезные ископаемые - уголь, нефть, газ, известняки и т.п. 
   Глобальный биогеохимический круговорот в биосфере не является целиком замкнутым. В отдельных случаях степень повторяющегося воспроизводства некоторых циклов составляет 90-98 %. Такая неполная замкнутость биогеохимических циклов в масштабах геологического времени приводит к дифференциации элементов и накоплению их в различных природных сферах Земли. 
   Непрерывному круговороту в биосфере Земли подвергаются только вещества. Когда речь идет об энергии, можно говорить только о ее направленном потоке. Передаваясь по трофическим цепям, энергия постепенно рассеивается. Частично она накапливается в земной коре в алюмосиликатах в результате разложения органических остатков. 
   Обновление живого вещества биосферы происходит за 8 лет. Фитомасса суши (биомасса наземных растений) обновляется за 14 лет. Масса живого вещества океана обновляется за 33 дня, а его фитомасса - за 1 день. Полная смена вод в гидросфере осуществляется за 2800 лет, смена кислорода в атмосфере - за несколько тысяч лет (до 3000), а углекислого газа - за 6,3 года. Общепланетные климатические и геохимические циклы, охватывающие атмосферу, океан, толщу донных осадков и кору выветривания, протекают крайне медленно и исчисляются сотнями тысяч и миллионами лет.

Развитие и функционирование живого вещества изменили океан, атмосферу, поверхность земной коры, привели  к образованию почвенного покрова. Почва вместе с растениями и животными  образует на суше сложную экологическую  систему, которая связывает и  перераспределяет солнечную энергию, углерод атмосферы, влагу, кислород, водород, фосфор, азот, серу, кальций  и другие элементы.

Те же функции выполняет  и Мировой океан с водными  растениями и планктоном. Жизнедеятельностью растительных организмов и их взаимодействием  с животными, микроорганизмами и  неживой природой обеспечивается механизм фиксации, накопления и перераспределения  космической энергии, поступающей  на Землю. Эта энергия аккумулируется в органических соединениях, слагающих  биомассу живого вещества. 
   За миллиарды лет эволюции Земли на планете сложились великий биогеохимический круговорот и дифференциация химических элементов в природе. На первых этапах своей истории человек стал звеном этого круговорота веществ и потока энергии вместе с животным населением. Однако в настоящее время хозяйственная деятельность человека привносит значительные изменения в биогеохимические циклы элементов в биосфере. Например, в результате производства удобрений азот атмосферы возвращается в почвы в размерах, превышающих его биологическую фиксацию. Рассеянные в виде следов ртуть, свинец, кадмий добываются, концентрируются и включаются в больших количествах в биосферу. 
   Элементами круговорота веществ в природе являются: 
   - регулярно повторяющиеся или непрерывно текущие процессы переноса энергии, образование и синтез новых соединений; 
   - направленные процессы последовательного преобразования, разложения и деструкции синтезированных ранее соединений под влиянием биогенных или абиогенных воздействий среды; 
   - постоянное или периодическое образование простейших минеральных и органоминеральных компонентов в газообразном, жидком или твердом состоянии. Важнейшую роль в биосфере играют круговороты воды, углерода, кислорода, азота, фосфора, серы. 
   Круговорот воды. Под влиянием энергии Солнца и жизнедеятельности биоценозов в биосфере поддерживается определенный баланс воды. Механизм, поддерживающий этот баланс, хорошо известен - это круговорот воды. Мировой баланс воды - величина довольно стабильная. Для существования жизни и развития человеческой цивилизации наиболее важной частью в этом балансе являются пресные воды, которые составляют речной сток, содержатся в озерах и подземных горизонтах. 

 Современный круговорот  воды происходит с участием  биосферы и человека. Цикл его таков: вода, испаренная с поверхности водоемов, почвой, растениями, животными, конденсируется, образуя облака, и выпадает в виде осадков. Часть ее попадает в водоемы непосредственно, часть питает подземные воды, часть потребляется животными и растениями и снова возвращается в Мировой океан уже как продукт жизнедеятельности, часть воды используется машинами, механизмами и промышленностью и возвращается в биосферу в виде пара и отработанной технической воды.

Вода, будучи сильнейшим растворителем, играет огромную роль в геохимических  процессах. Промывая толщи горных пород, она вовлекает в круговорот большую  часть химических элементов Периодической  системы элементов Д.И. Менделеева.   

Важнейшую роль в биосфере играют биогеохимические круговороты  таких элементов, как углерод, кислород, азот, фосфор, сера. 
   Круговорот углерода. Углерод по распространению на Земле занимает. 16-е место среди всех элементов. В наиболее общем виде круговорот углерода можно представить как процесс освобождения и связывания диоксида углерода (СО2), включая его растворение в воде океанов.   В.И. Вернадский в своем труде о биосфере писал: «Преобладающее, особое значение атомов углерода свойственно не только живым организмам, это свойство биосферы, ее живой и косной материи, до известной степени всей земной коры». С углеродом связан процесс возникновения и развития жизни на Земле. 

Он вовлекается в цепь непрерывных реакций и биогеохимических круговоротов, соединяясь с большинством элементов самыми разнообразными способами. В то же время связь атомов углерода между собой и с другими  атомами (кислорода, водорода, серы, фосфора  и др.) может быть разрушена под  воздействием природных факторов. Предполагается, что углерод распределен в довольно тонком слое земной коры, в атмосфере в виде диоксида и оксида углерода и в животной и растительной биомассах. Основные запасы углерода в природе содержатся в минералах и горных породах главным образом в форме карбонатов (СаСО3) и гидрокарбонатов (Са(НСО3))2, представляющих собой растворимые и нерастворимые донные отложения в Мировом океане, накопившиеся за миллионы лет геологической истории Земли. Этот процесс продолжается и в настоящее время. 
   В несвязанном состоянии углерод встречается в виде алмазов (наибольшие месторождения в Южной Африке и Бразилии) и графита (наибольшие месторождения в Германии, Шри-Ланке и России). Каменный уголь содержит до 90 % углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например в кальцит и доломит, а также в состав всех биологических веществ. 
   Углекислый газ, содержащийся в воздухе и воде, составляет запас углерода, участвующего в создании биомассы. Содержание СО2в атмосфере нестабильно (менее 1 %), и подвержено сезонным изменениям. В настоящее время наблюдается его увеличение, связанное с антропогенным воздействием. Если 100 лет назад содержание углекислого газа составляло примерно 270 частей на 1 млн, то сегодня эта цифра выросла до 350 частей на 1 млн. 
   Также постепенно растет (на 1-2 % ежегодно) содержание в атмосфере метана и оксида углерода, что тоже связано с сельским хозяйством и энергетикой. В тех районах, где в процессе выработки энергии потребляется большое количество ископаемого топлива, зарегистрирован небольшой, но неуклонный рост концентрации оксидов азота и серы. 
   Если сравнить содержание диоксида углерода в водах (реки, озера, моря), атмосфере и океане, то окажется, что Мировой океан содержит более 98 % общего запаса углерода атмосферы и гидросферы. 
   Следует подчеркнуть, что цикл биологического круговорота углерода не замкнут. Углерод может выходить из него на довольно длительный срок в виде карбонатов, торфов, сапропелей, гумуса и других органических осадков. В разных циклах биологического круговорота участвует около 98-99 % ассимилированного углерода. 
   Если в круговороте кислорода зеленые растения являются его поставщиком в атмосферу, то в круговороте углерода они являются мощным механизмом, улавливающим его из атмосферы в виде углекислого газа и связывающим в органические соединения. В процессе фотосинтеза углерод ассимилируется растениями и переводится в углеводы. В процессе же дыхания происходит обратный процесс: углерод органических соединений превращается в диоксид углерода. 
   Ежегодно наземные растения связывают около 18 млрд т углерода, растения морей - 25 млрд т. Еще одним мощным утилизатором углерода являются морские организмы, которые используют его для образования своих скелетов. В дальнейшем остатки отмерших морских организмов опускаются на дно морей и океанов и образуют мощные отложения известняков. Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. 
   Проследим «путешествие» атома углерода, одного из мириад себе подобных, в биосфере. Произошло извержение вулкана. Наконец-то для нашего атома закончилось время заточения глубоко в недрах Земли, и он вырывается на свободу в атмосферу. В виде молекулы углекислого газа, связанный с атомами киелорода, он беззаботно «плавает» в атмосфере в течение нескольких лет. И вот однажды растение или дерево бесцеремонно захватывают его, вовлекают в процесс фотосинтеза и превращают в более восстановленную химическую форму. Если же наш атом будет проплывать над океаном, то, скорее всего, попав в толщу воды, он превратится в ион бикарбоната и будет блуждать тысячи лет между атмосферой, почвами и океаном. В конце концов свобода обернется для него захоронением в океанических отложениях, где наш углерод, лишенный движения, просуществует в течение 100 млн лет или более. 
   Подсчитано, что среднестатистический атом углерода за всю историю Земли (4-4,5 млрд лет) мог совершить до 20 таких путешествий между осадочными породами и атмосферой.

Круговорот кислорода  является очень сложным циклом. В  него вовлечено большое количество представителей органического и  неорганического мира, а также  водород и вода, растворяющая кислород. Кислород постоянно циркулирует  в океане, биосфере и осадочных  породах. Содержание кислорода в  воде зависит от его растворимости  на поверхности и фотосинтеза  водорослями. Загрязнение воды взвешенными  частицами уменьшает ее прозрачность, увеличивает рассеяние света  и снижает активность фотосинтеза. Содержание кислорода в воде является одним из показателей ее здоровья. По данным замеров, в большинстве  наших водоемов эта величина сейчас ниже нормы. 
   Кислород является самым распространенным элементом на Земле. В гидросфере его содержится 85,82 % по массе, в литосфере - 47 %, в атмосфере - 23,15 %. Кислород стоит на первом месте по числу образуемых им минералов (1364). Среди них преобладают силикаты, кварц, оксиды железа, карбонаты и сульфаты. В живых организмах содержится в среднем около 70 % кислорода. Он входит в состав большинства органических соединений (белков, жиров, углеводов и т.д.) и в состав скелета. 
   В процессе сгорания ископаемого топлива образуется довольно большое количество воды, которая в конечном счете потребляется растением и разлагается в процессе фотосинтеза на атомарный водород и атомарный кислород. Высвободившийся кислород снова поступает в атмосферу и используется для создания органического вещества. Круг замыкается. 
   Итак, единственным производителем животворного кислорода является зеленое вещество растений. Растения - естественные накопители космической солнечной энергии. Потребители же его - человек, животные, почвенные организмы и сами растения, которые используют кислород в процессе дыхания. Причем если на заре человечества кислород в основном употреблялся при дыхании, то в наше время научно-технических революций огромная масса кислорода идет на обеспечение промышленного производства, хозяйственной деятельности человека и средств коммуникаций. В огромных количествах кислород расходуется при сжигании топлива в двигателях автомобилей, самолетов, кораблей, сельскохозяйственных машин, топках электростанций и т.д. 
   Одной из самых негативных сторон существования современной цивилизации является то, что темпы хозяйственной деятельности человека увеличиваются, а зеленые площади Земли сокращаются. Нещадно вырубаются тропические леса, которые являются основным поставщиком кислорода - «легкими» нашей планеты.  И мы получаем все меньше кислорода. Леса тропиков вырубаются сейчас со скоростью 23 га/мин, или более 1/3 га/с. А между тем каждый гектар тропического леса продуцирует 28 т кислорода. 
   Взрослое дерево за сутки производит 180 л кислорода, а взрослый человек потребляет его в количестве 360 л, если ничего не делает, и до 700-900 л, когда работает. Но это выглядит сущим пустяком на фоне других цифр. Так, легковой автомобиль, за 1 тыс. км пробега расходует столько кислорода, что его хватило бы человеку на год, а современный реактивный самолет за время перелета из Америки в Европу сжигает от 35 до 55 т кислорода! 
   Таким образом, деятельность человека во всех ее проявлениях значительным образом влияет на современный круговорот кислорода.  

Круговорот азота. Особое место среди биогенных элементов  занимает азот - важный строительный материал для белков, нуклеиновых кислот и  других соединений. Азот распространен  в биосфере крайне неравномерно. В  больших количествах он содержится в биогенных ископаемых (уголь, нефть, битум, торф). Вследствие высокой растворимости  солей азотной кислоты и солей  аммония содержащегося в почвах азота, как правило, недостаточно для  нормального питания растений. В  почве его содержится всего от 0,02 до 0,5%, и то лишь благодаря деятельности микроорганизмов некоторых растений и разложению органических веществ. В то же самое время миллионы тонн азота в атмосфере давят на поверхность Земли. Над каждым гектаром почвы, образно говоря, «висит» до 80 тыс. т этого элемента. Недаром  азот называют инертным газом (от греч. - «безжизненный»). Почему же так получается? Дело в том, что в воздухе азот находится в молекулярном состоянии, т.е. в бездействии. Элементом жизни он становится только в химических соединениях - легкорастворимых азотнокислых и аммиачных солях. Однако связанного (хотя бы в простые оксиды) азота в воздухе нет. 
   Исключением является техногенное поступление азота в атмосферу. Это происходит в результате выбросов автомобильного транспорта, тепловых электростанций, котельных, промышленных предприятий. При сжигании ископаемого топлива (нефть, уголь, газ) происходит выброс в атмосферу оксидов азота (N2О, NО2), которые являются загрязнителями окружающей среды. Несмотря на то что в атмосфере присутствует довольно большое количество азота, большинство организмов не может ассимилировать его. Буквально купаясь в азоте, растения не в состоянии извлечь его из воздуха. Азот практически не участвует в геохимических процессах и лишь накапливается в атмосфере. 
   Основными стадиями круговорота азота являются фиксация, аммонификация, нитрификация и денитрификация. 

 Пути фиксации азота  в биосфере могут быть разными.  Прежде всего, это поступление  его вместе с дождевыми водами  из атмосферы, главным образом  во время гроз. Небольшая часть  азота попадает в биосферу  при вулканических извержениях  и значительное количество - в  результате выбросов промышленных  предприятий. Но основным источником азота является биологическая фиксация - связывание атмосферного азота свободноживущими азотфиксирующими бактериями - азотобактером, цианобактериями и другими, а также азотфиксаторами, живущими в симбиозе (совместное сожительство) с высшими растениями, например клубеньковые бактерии на корнях бобовых растений, таких, как арахис, соя, чечевица, фасоль, люцерна, клевер, люпин и др. Фиксируя атмосферный азот, они снабжают растение-хозяина доступными для него соединениями азота в виде нитратов и нитритов. 
   Корни бобовых растений вступают в симбиоз с живущими в почве клубеньковыми бактериями.   Эти бактерии обладают удивительной способностью улавливать азот из воздуха и перерабатывать в нитрат аммония. В обмен на сахар и безопасный приют в корневых клубеньках бобовых бактерии обильно снабжают их готовыми растворимыми соединениями азота. В таких симбиотических системах азот становится доступен растениям в виде иона аммония (NH+4). После отмирания растений и разложения клубеньков почва обогащается органическими и минеральными формами азота. Азотсодержащие органические вещества отмерших растений и животных, а также мочевина и мочевая кислота, выделяемая животными и грибами, расщепляются гнилостными бактериями до аммиака. 
   Такой процесс получил название аммонификации. 
   Нитрификация заключается в том, что часть аммиака может поглощаться в виде иона аммония NH-непосредственно растениями, часть вымывается из почвы, а оставшийся аммиак окисляется специализированными нитрифицирующими бактериями до нитритов и нитратов, которые вновь используются растениями. Процесс нитрификации выражается следующей схемой:  

Информация о работе Круговорот веществ и биогеохимические циклы важнейших химических элементов в биосфере