Под воздействием
кислотных дождей происходит вымывание
из растений неорганических соединений,
к которым относятся все основные микро–
и макроэлементы. Так, например, в наибольших
количествах обычно вымываются калий,
кальций, магний и марганец. Также подвергаются
вымыванию из растений и различных органических
соединения, такие как: сахара, аминокислоты,
органические кислоты, гормоны, витамины,
пектиновые и фенольные вещества и т.п.
В результате этих процессов возрастают
потери необходимых для растений биогенных
элементов, что в результате приводит
к их повреждениям.
Поступающие в почву с кислотным
дождем ионы водорода могут замещаться
находящимися в почве катионами, в результате
чего происходит либо выщелачивание кальция,
магния и калия, либо их седиментация в
обезвоженной форме. Возрастает мобильность
токсичных тяжелых металлов, таких как
марганец, медь, кадмий. Растворимость
тяжелых металлов сильно зависит от рН.
Раствореные и вследствие этого легко
поглощаемые растениями тяжелые металлы
являются ядами для растений и могут привести
их к гибели. Одним из наиболее опасных
элементов, для живых организмов живущих
в почве, является алюминий растворенный
в сильнокислой среде. Во многих почвах,
например, в северных умеренных и бореальных
лесных зонах, наблюдается поглощение
более высоких концентраций алюминия
по сравнению с концентрациями щелочных
катионов. Хотя многие виды растений в
состоянии выдержать это соотношение,
однако при выпадении значительных количеств
кислотных осадков соотношение алюминий-кальций
в почвенных водах настолько изменяется,
что ослабляется рост корней и создается
опасность для существования деревьев.
Происходящие в составе почвы изменения
могут преобразовывать состав микроорганизмов
в почве, воздействовать на их активность
и тем самым влиять на процессы разложения
и минерализации, а также на связывание
азота и внутреннее закисление.
Несмотря
на выпадающие кислотные осадки почва
обладает способностью к выравниванию
кислотности среды т.е. до определенной
степени она может сопротивляться усилению
кислотности. Сопротивляемость почвы
определяет как правило наличие известниковых
и песчаниковых пород (в состав которых
входит карбонат кальция CaCO3), которые
в результате гидролиза имеет щелочную
реакцию.
Закисление пресных вод.
Закисление
пресных вод – это потеря ими
способности к нейтрализации. Закисление
как правило вызывают сильные кислоты
такие как серная и азотная кислота. На
протяжении длительного периода более
важную роль играют сульфаты, но во время
эпизодических явлений (таяние снега)
сульфаты и нитраты действуют совместно.
Процесс закисления
водоемов можно условно разделить на 3 фазы:
- Убыль ионов гидрокарбоната, т.е. уменьшение способности
к нейтрализации при неизменяющемся значении
рН.
- Уменьшение рН при уменьшении количества ионов гидрокарбоната. Значение рН тогда падает ниже 5,5. Наиболее чувствительные виды живых организмов начинают погибать уже при рН = 6,5.
- При рН = 4,5 кислотность растворастабилизируется. В этих условиях кислотность раствора регулируется реакцией гидролиза алюминия. В такой среде способны жить только немногие виды насекомых, растительный и животный планктон, а также белые водоросли.
Гибель
живых существ помимо действия сильноядовитого
иона алюминия может быть вызванна
и тем, что под воздействием иона
водорода выделяются кадмий, цинк, свинец,
марганец, а также другие ядовитые
тяжелые металлы. Количество растительных
питательных веществ начинает умненьшаться.
Ион алюминия образует с ионом ортофосфата
нерастворимый фосфат алюминия, который
осаждается в форме донного осадка: Al3+
+ PO43- ª AlPO4. Как правило уменьшение
рН воды идет парралельно с сокращением
популяций и гибелью рыб, земноводных,
фито- и зоопланктона, а также множества
различных других организмов.
Наибольшего
масштаба закисление озер и рек достигло
в Швеции, Норвегии, США, Канаде,
Дании, Бельгии, Голландии, Германии, Шотландии,
Югославии и ещё в целом ряде Европейских
государств. Изучение 5000 озер в южной Норвегии
показало, что в 1750 из них исчезли популяции
рыб, а 900 другим озерам угрожает серьезная
опасность. В южной и центральной частях
Щвеции наблюдается потеря рыбы в 2500 озерах,
то же самое предпологается в ещё 6500 озерах,
где уже обнаруженны признаки закисления.
Почти в 18 000 озерах рН воды менее 5,5, что
очень неблагоприятно влияет на популяции
рыб.
Непосредственное воздействие
кислотных осадков на окружающую
среду
- Гибель растений. Непосредственная гибель растений
в наибольшей степени наблюдается вблизи
от непосредственного источника выбросов,
а также в радиусе нескольких десятков
километров от этого источника. Главной
причиной является высокая концентрация
двуокиси серы. Это соединение адсорбируется
на поверхности растения, главным образом
на его листьях, и проникая в организм
растения принимает участие в различных
окислительно восстановительных реакциях.
Под их воздействием происходит окисление
ненасышенных жирных кислот мембран, тем
самым изменяется их проницаемость, что
в дальнейшем оказывает влияние на такие
жизнено-важные процессы как дыхание и
фотосинтез. В первую очередь происходит
гибель лишайников, которые могут существовать
только при очень чистом состоянии окружающей
среде. Лишайники являются чувствительными
индикаторами различных видов воздушного
загрязнения. Недавние исследования, произведённые
в университете Ноттингема, показали,
что образующие подушки виды рода Cladonia
могут служить чувствительными индикаторами
кислотных дождей.
- Прямое воздействие на человека. Особую опасность для здоровья
человека представляют аэрозольные частицы
кислотного характера. Степень их опасности
зависит в первую очередь от их размеров.
Крупные аэрозольные частицы задерживаются
в верхних дыхательных путях, тогда как
мелкие (менее 1 мкм.) капли состоящие из
смеси серной и азотной кислот могут проникать
в самые отдаленные участки легких и наносить
там существенные повреждения. Кроме того
такие металлы как алюминий (и др. тяжелые
металлы) могут попасть в ту пищевую цепочку
на вершине которой стоит человек, что
может привести к его отравлению.
- Коррозия металлов, зданий и памятников. Причиной коррозии является увеличение
концентрации иона водорода на поверхности
металлов, от которой в большой степени
и зависит их окисление. В загородных районах
степень коррозии металлоконструкции
составляет несколько микрометров в год,
в то время как в загрязненных городских
районах она может достигнуть 100 мкм. в
год. Кислотный дождь может причинять
ущерб не только металлам, но и зданиям,
памятникам и прочим сооружениям. Памятники
построенные из известняка и песчанника
подвергаясь воздействию кислотного дождя
разрушаются очень быстро. Содержащийся
в песчанниках и известняках СаСО3
превращаясь в сульфат кальция легко вымывается
дождевой водой.
В настоящий момент основным топливом
в Эстонии является ископаемый сланец,
который имеет довольно высокое содержание
серы. Однако в силу его термического использования
в атмосферу выбрасываются также основные
окислы, нейтрализующие кислотные компоненты.
Поэтому сжигание сланца кислотных дождей
не вызывает. Даже напротив, в Северо –
Восточной Эстонии выпадают щелочные
осадки рН которых может достигать 9 и
более едениц.
Пути решения проблеммы
Для разрешения проблеммы кислотных
дождей необходимо уменьшить выбросы
двуокиси серы и окиси азота в атмосферу.
Этого можно достичь несколькими методами,
в том числе путем сокращения энергии
получаемой человеком при сжигании ископаемого
топлива и увеличения количества электростанций
использующих альтернативные источника
энергии (энергия солнечного света, ветра, энергию
приливов и отливов). Другие возможности
для уменьшения выбросов загрязняющих
веществ в атмосферу это:
- Снижение содержания серы в различных видах топлива. Наиболее приемлемым решением было
бы использование только тех видов топлива,
которые содержат минимальные количества
соединений серы. Однако таких видов топлива
очень мало. Только 20% из всех мировых запасов
нефти имеют содержание серы менее 0,5%.
И в будующем, к сожалению, содержание
серы в используемом топливе будет увеличиваться,
так как нефть с низкими содержаниями
серы добывается ускоренными темпами.
Также дело обстоит и с ископаемыми углями.
Удаление серы из состава топлива оказалось
очень дорогим процессом в финансовом
плане, к тому же удается вывести из состава
топлива не более 50% соединений серы, что
является недостаточным количеством.
- Применение высоких труб. Данный метод не уменьшает воздействия
на окружающую среду, но увеличивает эффективность
перемешивания загрязняющих веществ в
более высоких слоях атмосферы, что приводит
к выпадению кислотных осадков на более
удаленных территориях от источника загрязнения.
Данный метод уменьшает воздействие загрязнений
на местные экосистемы, но увеличивает
опасность кислотных дождей в более удалённых
регионах. Кроме того данный метод является
очень безнравственным, так как страна
в которой происходят эти выбросы переносит
часть последствий на другие страны.
- Технологические изменения. Количество оксидов азота NO,
который образуется при горении, зависит
от температуры горения. В ходе проведенных
эксперементов удалось установить, что
чем меньше температура горения, тем меньше
возникает оксида азота, к тому же количество
NO зависит от времени нахождения топлива
в зоне горения с избытком воздуха. Таким
образом, соответствующие изменения технологий
могут сократить количество выбросов.
Сокращение выбросов двуокиси серы можно
получить в результате очистки конечных
газов от серы. Наиболее распространеный
метод это мокрый процесс, когда конечные
газы барботируются через раствор известняка,
в результате чего образуются сульфит
и сульфат кальция. Таким способом можно
удалить из конечных газов наибольшее
количество серы.
- Известкование. Для уменьшения закисления озер
и почв в них добавляют щелочные вещества
(СаСО3). Данная операция очень часто
применяется в Скандинавских странах,
где известь распыляют с вертолетов на
почву или на водосборную территорию.
Скандинавские страны в отношении кислотных
дождей страдают больше всего, так как
большенство Скандинавских озер имеют
гранитное или бедное известняками ложе.
Такие озера обладают гораздо меньшей
способностью к нейтрализации кислот,
чем озера, расположенные на территориях
богатых известняком. Но наряду с преимуществами
известкование имеет и свой ряд недостатков:
- В проточной и быстро перемешивающейся
воде озер нейтрализация происходит недостаточно
эффктивно;
- Происходит грубое нарушение химического и биологического равновесия вод и почв;
- Не удается устранить все вредные последствия закисления;
- С помощью известкования нельзя удалять тяжелые металлы.
Эти металлы во время уменьшения кислотности
переходят в труднорастворимые соединения
и осаждаются, однако при добавлении новой
порции кислоты снова растворяются, представляя
таким образом постоянную потенциальную
опасность для озер.
Необходимо отметить тот факт, что до сих пор не разработан
такой способ, который при сжигании ископаемого
топлива будет позволять снижать до минимума
выбросы двуокиси серы и азота, а в ряде
случаев полностью предотвращать его.
Использованная литература:
- http://chemistry.narod.ru/razdeli/eco/5.htm
- «Кислотный дождь» Л. Хорват. Москва Стройиздат 1990. с 79
- «Экология Эстонии» Симагина Людмила. KPD kirjastus Tallinn 2001. с 103
- «Лес и атмосфера» Уильям Х. Смит. Москва. «Прогресс» 1985. с 428
- http://www.krugosvet.ru/articles/03/1000309/1000309a5.htm
- http://ib.komisc.ru/t/ru/ir/vt/99-19/11.html