Автор: Пользователь скрыл имя, 14 Декабря 2012 в 22:39, реферат
В основу всех мероприятий по экологической защите положен принцип нормирования качества окружающей природной среды. Этот термин означает установление нормативов (показателей) допустимых воздействий человека на природную среду. А под самим качеством окружающей природной среды понимают степень соответствия ее характеристик потребностям людей и технологическим требованиям.
1. Введение…………………………………………………………….стр. 3-4.
2. Классификация строительных материалов………………………стр. 5-32
2.1 Природные строительные материалы………………………………………..стр. 5-6
2.2 Искусственные строительные материалы……………………………………стр. 7
2.3 Вяжущие материалы……………………………………...…………………..стр. 8-9
2.4 Цемент……………………………………………………...………………….стр. 10-15
2.5 Шлакопортландцемент……………………………………………………….стр. 15-16
2.6 Строительная керамика……….…………………………...…………………..стр. 16-17
2.7 Кирпич………………………….…………………………..…………………..стр. 17-19
2.8 Черепица………………………………………………………………………..стр. 19-20
2.9 Керамзит и аглопорит……………………………………...…………………..стр. 20-22
2.10 Стекло…………………………………………………………………………..стр. 22-25
2.11 Ситалл и шлакоситалл ……….………………………………………………..стр. 25-26
2.12 Металлические материалы…………………………………………………….стр. 27-32
3. Свойства строительных материалов……………………………...стр. 33-54
3.1 Основные свойства строительных материалов………………………………стр. 33-34
3.2 Классификация и структура материалов……………………………………..стр. 34-37
3.3 Механические свойства строительных материалов…………………………стр. 37-42
3.4 Физические свойства строительных материалов……………………………стр. 42-48
3.5 Химические свойства строительных материалов……………………………стр. 48-49
3.6 Экологические свойства строительных материалов………………………....стр. 49-54
4. Экологическая оценка строительных материалов…………………………стр.55-64
4.1 Экологическая оценка строительных материалов по показателям их гигиенической безопасности. при обосновании выбора отделочных материалов для интерьеров……………………стр.55-56
4.2 Экологическая оценка строительных материалов по показателям их радиационной безопасности (радиационная гигиена)………………………………………………………………….стр.56-58
4.3 Экологическая оценка строительных материалов по показателям пожарной безопасности…………………………………………………………………….…стр.58-64
4.4
5. Экологические риски при производстве строительных материалов……стр.65-64
5.1 Факторы экологического риска и его классификация…………………………………стр. 65-67
5.2 Производство строительных материалов и вредные вещества, попадающие в атмосферу при их производстве……………………………………………………………………………..стр. 67-69
6. Экологически чистые строительные материалы…………………………стр. 70-76
6.1 Неэкологичные строительные материалы…………………………………….стр. 70-71
6.2 Абсолютно экологичные стройматериалы……………………………………стр 71-72
6.3 Условно экологические стройматериалы……………………………………стр. 72-73
6.4 Эко маркировка………………………………………………………………..стр. 73-76
7. Влияние строительных материалов на здоровье человека и экологию помещения…………………………………………………………….стр. 77-90
7.1 Основные критерии безопасности и характеристики для оценки влияния строительных материалов на здоровье человека……………………………………………….стр. 83-89
7.2 Экологические пути улучшения санитарно-гигиенических свойств отделочных строительных материалов………………………………………………………………………стр. 89-90
8. Экологические проблемы, связанные с производством строительных материалов и пути их решения…………………………………………………………стр. 91-.
8.1. Производства, влияющие на окружающую среду………………………....стр. 95-99
8.1 Рациональное использование строительных материалов………………….стр. 99-103
9. Нормативно правовая база……………………………………………..стр.104-105
10. Глоссарий основных понятий и терминов……………………………стр.106-108.
11. Заключение………………………………………………………………стр.109
12. Список литературы……………………………………………………..стр.110-112
Водопроницаемость - свойство материала пропускать воду под давлением. Величина водопроницаемости характеризуется количеством воды, прошедшей в течение 1 час. через 1 площади испытуемого материала при постоянном давлении. К водонепроницаемым материалам относятся особо плотные (сталь, стекло, битум) и плотные материалы с замкнутыми порами (гидротехнический бетон специально подобранного состава). Высокой водонепроницаемостью отличаются гидроизоляционные, антикоррозионные и герметизирующие материалы.
Паро- и газопроницаемость - свойства материала пропускать через свою толщу под давлением водяной пар или газы (воздух). Все пористые материалы при наличии незамкнутых пор способны пропускать пар или газ.
Паро- и газопроницаемость материала
характеризуются
При выборе материалов для стен производственных помещений с повышенной влажностью (коммунальных предприятий, текстильных фабрик и т.п.) необходимо учитывать, что в зимнее время водяные пары, проходя через стену и попадая в холодную часть ограждения, конденсируются и значительно повышают влажность в этих местах. При этом создаются условия, способствующие быстрому разрушению материала (силикатного кирпича, легкого бетона) наружной ограждающей конструкции при действии мороза.
Паронепроницаемые материалы следует располагать с той стороны ограждающей конструкции, с которой содержание водяного пара в воздухе больше.
Воздухопроницаемость материалов следует учитывать при применении их в наружных стенах и покрытиях зданий, а газопроницаемость при применении их в конструкциях специальных сооружений.
Морозостойкость - свойство насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности.
Замерзание воды, заполняющей поры
материала, сопровождается увеличением
ее объема примерно на 9 %, в результате
чего возникает давление на стенки
пор, приводящее к разрушению материала.
Однако во многих пористых материалах
вода не может заполнить более 90
% объема пор, поэтому образующийся
при замерзании лед имеет свободное
пространство для расширения. Разрушение
материала наступает только после
многократного попеременного
Принимая во внимание неоднородность строения материала и неравномерность распределения в нем воды, удовлетворительную морозостойкость можно ожидать у таких пористых материалов, в которых вода заполняет не более 80 %, пор, т. е. объемное водопоглощение таких материалов составляет не более 80 % открытой пористости. Плотные материалы, не имеющие пор, или материалы с незначительной открытой пористостью, водопоглощение которых не превышает 0,5 %, обладают высокой морозостойкостью. Морозостойкость имеет большое значение для стеновых материалов, систематически подвергающихся попеременному замораживанию и оттаиванию, а также для материалов, применяемых в фундаментах и кровельных покрытиях.
Материалы на морозостойкость испытывают в холодильных камерах путем замораживания насыщенных водой образцов при температуре -15 - -17 °С и последующего их оттаивания в воде при температуре около 20 °С. Материал признают морозостойким, если после заданного числа циклов замораживания и оттаивания потеря в массе образцов в результате выкрашивания и расслаивания не превышает 5 % и прочность снижается не более чем на 25 %.
Для морозостойких материалов КМрз должен быть не менее 0,75.
По числу выдерживаемых циклов попеременного замораживания и оттаивания (степени морозостойкости) материалы подразделяют на марки Мрз 10, 15, 25, 35, 50, 100, 150, 200 и более. К строительным материалам в зависимости от вида конструкции и характера работы сооружения предъявляют различные требования по морозостойкости. Так, морозостойкость керамического кирпича должна быть не менее 15 циклов, асбестоцементных кровельных материалов 30-50 циклов, а конструктивного бетона в гидротехнических сооружениях - 200 циклов и более.
Теплопроводность - свойство материала передавать через толщу теплоту при наличии разности температур на поверхностях, ограничивающих материал. Теплопроводность материала оценивается количеством теплоты, проходящей через стену из испытуемого материала толщиной 1 м площадью 1 за 1 час при разности температур противоположных поверхностей стены 1 °С. Теплопроводность измеряется в Вт/(м-К) или Вт /(м-°С)
Теплопроводность материала
На теплопроводность материала в значительной мере влияют величина пористости, размер и характер пор. Мелкопористые материалы менее теплопроводны, чем крупнопористые, даже если их пористость одинакова. Материалы с замкнутыми порами имеют меньшую теплопроводность, чем материалы с сообщающимися порами. Теплопроводность однородного материала зависит от величины его средней плотности. Так, с уменьшением плотности материала теплопроводность уменьшается и наоборот. Теплопроводность в воздушносухом состоянии тяжелого бетона 1,3-1,6, керамического кирпича 0,8-0,9, минеральной ваты 0,06-0,09 Вт/(м*°С).
Влажные материалы более теплопроводны, чем сухие. Объясняется это тем, что теплопроводность воды в 25 раз выше теплопроводности воздуха. При повышении температуры теплопроводность увеличивается, что имеет значение для теплоизоляционных материалов, применяемых для изоляции трубопроводов, котельных установок и др.
Знать теплопроводность материала необходимо при теплотехническом расчете толщины стен и перекрытий отапливаемых зданий, а также при определении требуемой толщины тепловой изоляции горячих поверхностей, например, трубопроводов, заводских печей и т. д.
Теплоемкость - свойство материала поглощать при нагревании определенное ,количество теплоты и выделять ее при охлаждении.
Показателями теплоемкости служит удельная теплоемкость, равная количеству теплоты: (Дж), несводимому для нагревания 1 кг материала на 1 . Удельная теплоемкость кДж ,искусственных каменных материалов 0,75-0,92, древесины - 2,4-2,7, стали - 0,48, воды - 4,187.
Теплоемкость материалов учитывают при расчетах теплоустойчивости стен и перекрытий отапливаемых зданий, подогрева составляющих бетона и раствора для зимних работ, а также при расчете печей.
Огнестойкость - способность материала противостоять действию высоких температур и воды в условиях пожара. По степени огнестойкости строительные материалы делят на несгораемые, трудносгораемые и сгораемые.
Несгораемые материалы под действием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются. К этим материалам относят природные каменные материалы, кирпич, бетон, сталь. Трудносгораемые материалы под действием огня с трудом воспламеняются, тлеют или обугливаются, но после удаления источника огня их горение и тление прекращаются. Примером таких материалов могут служить древесно-цементный материал фибролит и асфальтовый бетон. Сгораемые материалы под воздействием огня или высокой температуры воспламеняются и продолжают гореть после удаления источника огня. К этим материалам в первую очередь следует отнести дерево, войлок, толь и рубероид.
Огнеупорностью называют свойство материала выдерживать длительное воздействие высокой температуры, не расплавляясь и не деформируясь. По степени огнеупорности материалы делят на огнеупорные, тугоплавкие и легкоплавкие.
Огнеупорные материалы способны выдерживать продолжительное воздействие температуры свыше 1580 °С. Их применяют для внутренней облицовки промышленных печей (шамотный кирпич). Тугоплавкие материалы выдерживают температуру от 1350 до 1580 °С (гжельский кирпич для кладки печей). Легкоплавкие материалы размягчаются при температуре ниже 1350 °С (обыкновенный глиняный кирпич).
3.5. Химические свойства строительных материалов.
Химические свойства характеризуют способность материалов к химическим превращениям под влиянием веществ, находящихся с ними в непосредственном соприкосновении.
Способность материалов не
разрушаться в химически
Разрушение материалов в
результате физического или
Неметаллические материалы наиболее часто корродируют в водной среде. Агрессивные свойства воды определяются степенью ее минерализации, жесткости, а также кислотности или щелочности. Обычно вода рек и озер имеет слабощелочную реакцию. Общее содержание солей в речных водах, как правило, не превышает 0,3—0,5 г/л. Грунтовые и подземные естественные воды содержат обычно повышенное количество минеральных солей и других примесей. Морская (океанская) вода может содержать до 35 мг/л солей, из них до 78% хлористого натрия, 11% хлористого магния, около 11% сульфатов магния, кальция и калия.
Стойкость материалов к
3.6 Экологические свойства строительных материалов.
Рост требований
к надежности строительных
Долгие годы промышленность
строительных материалов была
ориентирована на выпуск
Получение высококачественной
экономически выгодной и
Использование на протяжении долгих лет традиционно считавшихся безопасными строительных материалов, в свете их радиационного воздействия на людей, заставило по-новому оценить эти материалы с экологической точки зрения (см. рис. 1).
В соответствии с ГОСТ
30108-94, эффективная удельная
Аэфф = АRa + 1,31.ATh + 0,085.AK , (1)
где АRa и АTh – удельные активности 226Ra и 232Th, находящихся в равновесии с остальными членами уранового и ториевого рядов, АK – удельная активность К-40, Бк/кг.
По НРБ-99 эффективная удельная активность (Аэфф) природных радионуклидов в строительных материалах (щебень, гравий, песок, бутовый камень, цементное и кирпичное сырье и пр.), добываемых на их месторождениях или являющихся побочным продуктом промышленности (отходы промышленного производства, используемые для изготовления строительных материалов – золы, шлаки и пр.), не должна превышать:
- для материалов, используемых
в строящихся и
Аэфф= АRa +1,3АTh+0,09АK ≤ 370 Бк/кг; (2)
- для материалов, используемых
в дорожном строительстве в
пределах территории
Аэфф Ј 740 Бк/кг;