Экологические проблемы теплоэнергетики

Автор: Пользователь скрыл имя, 23 Декабря 2011 в 11:43, контрольная работа

Описание работы

Объекты энергетики, как и многие предприятия других отраслей промышленности, представляют собой источники неизбежного, потенциального, до настоящего времени практически количественно не учитываемого риска для населения и окружающей среды.

Энергетические объекты (топливно-энергетический комплекс вообще и объекты энергетики в частности) по степени влияния на окружающую среду принадлежат к числу наиболее интенсивно воздействующих на биосферу.

Содержание

Введение ………………………………………………………………............2
Экологические проблемы теплоэнергетики …………………………….3
Экологические проблемы гидроэнергетики ………………………….....9
Экологические проблемы ядерной энергетики ………………………..14
Краткая экологическая характеристика нетрадиционных методов

получения энергии……………………………………………………….16

Заключение ………………………………………………………………….22

Список используемой литературы…………………………………………23

Работа содержит 1 файл

Артём экология.docx

— 58.70 Кб (Скачать)

     Однако  ветровые источники энергии оказывают  специфическое воздействие на окружающую среду, требуют огромных площадей.

     Известно, что к работающему ветряку  близко подходить нежелательно, и притом с любой стороны, так как при изменениях направления ветра направление оси ротора тоже изменяется.

     Ветроагрегаты близко друг к другу ставить нельзя, так как они могут создавать  взаимные помехи в работе, «отнимая ветер» один у другого. Минимальное расстояние между ветряками должно быть не менее их утроенной высоты.

     Работающие  ветродвигатели создают значительный шум, генерируют неслышимые ухом, но вредно действующие на людей инфразвуковые колебания с частотами ниже 16 Гц.

     Ветряки распугивают птиц и зверей, нарушая  их естественный образ жизни, а при большом их скоплении на одной площадке могут существенно исказить естественное движение воздушных потоков с непредсказуемыми последствиями. Во многих странах, в том числе в Ирландии, Англии и других, жители неоднократно выражали протесты против размещения ВЭС вблизи населенных пунктов и сельскохозяйственных угодий, а в условиях густо населенной Европы это означает  везде.

      Неприятным  побочным эффектом использования ветряков для сторонников экологически чистого хозяйства оказались биологические последствия. Союзы охраны природы отмечают, что многие перелетные птицы вынуждены менять свои маршруты, избегая ветряных парков — мельницы отпугивают птиц. В ряде случаев положение сложилось настолько серьезное, что местные экологи вынуждены были поставить вопрос о временном закрытии установок или о переводе их на более гибкий режим работы с учетом сезонных перемещений птиц.

      Использование энергии солнца

      Солнечная энергия обладает неоспоримыми преимуществами перед традиционными органическим и ядерным горючим. Это исключительно чистый вид энергии, который не загрязняет окружающую среду, а само ее использование не связано ни с какой биологической опасностью. Использование солнечной энергии в больших масштабах не нарушает сложившегося в эволюции энергетического баланса нашей планеты.

     Это практически неисчерпаемый источник энергии. Ее можно использовать прямо (посредством улавливания техническими устройствами) или опосредованно через продукты фотосинтеза, круговорот воды, движение воздушных масс и другие процессы, которые обусловливаются солнечными явлениями.

      Использование солнечного тепла - наиболее простой и дешевый путь решения отдельных энергетических проблем.

     Отопление и горячее водоснабжение как  низкотемпературные процессы преобразования солнечной энергии в теплоту могут быть осуществлены сравнительно простыми техническими средствами. Солнечные водонагреватели начинают использоваться для целей тепло- и горячего водоснабжения индивидуальных потребителей в южных климатических зонах.

     Наиболее  распространено улавливание солнечной  энергии посредством различного вида коллекторов. В простейшем виде это темного цвета поверхности для улавливания тепла и приспособления для его накопления и удержания. Оба блока могут представлять единое целое. Коллекторы помещаются в прозрачную камеру, которая действует по принципу парника. Имеются также устройства для уменьшения рассеивания энергии (хорошая изоляция) и ее отведения, например, потоками воздуха или воды.

      Еще более просты нагревательные системы  пассивного типа. Циркуляция теплоносителей здесь осуществляется в результате конвекционных токов: нагретый воздух или вода поднимается вверх, а их место занимают более охлажденные теплоносители. Примером такой системы может служить помещение с обширными окнами, обращенными к солнцу, и хорошими изоляционными свойствами материалов, способными длительно удерживать тепло. Для уменьшения перегрева днем и теплоотдачи ночью используются шторы, жалюзи, козырьки и другие защитные приспособления. В данном случае проблема наиболее рационального использования солнечной энергии решается через правильное проектирование зданий. Некоторое удорожание строительства перекрывается эффектом использования дешевой и идеально чистой энергии.

     Крупномасштабное  производство электроэнергии на солнечных электростанциях имеет определенные трудности, поскольку источник солнечной энергии отличается низкой плотностью. Поэтому площадь для сбора солнечной энергии и ее концентрации на оптических системах доходит до нескольких десятков квадратных километров. Из-за большой стоимости единицы поверхности модулей концентратов создание мощных СЭС требует значительных затрат.

      Энергия воды, океанических и термальных вод

     Энергия, выделяемая при волновом движении масс воды в океане, действительно огромна. Средняя волна высотой 3 м несет примерно 90 кВт энергии на 1 м2 побережья. Однако практическая реализация данной энергии вызывает большие сложности. В настоящее время эта энергия используется в незначительном количестве из-за высокой себестоимости ее получения.

      Недостаточно  до настоящего времени используются энергетические ресурсы средних и малых рек (длина от 10 до 200 км). Только в России таких рек имеется более 150 тысяч. В прошлом именно малые и средние реки являлись важнейшим источником получения энергии. Небольшие плотины на реках не столько нарушают, сколько оптимизируют гидрологический режим рек и прилежащих территорий. Их можно рассматривать как пример экологически обусловленного природопользования, мягкого вмешательства в природные процессы. Водохранилища, создававшиеся на малых реках, обычно не выходили за пределы русел. Такие водохранилища гасят колебания воды в реках и стабилизируют уровни грунтовых вод под прилежащими пойменными землями. Это благоприятно сказывается на продуктивности и устойчивости как водных, так и пойменных экосистем.

     Несравнимо  более реальны возможности использования геотермальных ресурсов. В данном случае источником тепла являются разогретые воды, содержащиеся в недрах земли. В отдельных районах такие воды изливаются на поверхность в виде гейзеров (например, на Камчатке)! Геотермальная энергия может использоваться как в виде тепловой, так и для получения электричества.

     Ведутся также опыты по использованию  тепла, содержащегося в твердых структурах земной коры. Такое тепло из недр извлекается посредством закачки воды, которую затем используют так же, как и другие термальные воды.

      Достоинства использования глубинного тепла  земли очевидны. ГеоТЭС может функционировать десятки лет, используя практически неугасаемые тепловые котлы. Себестоимость электроэнергии, получаемой таким образом, несмотря на значительные первоначальные затраты, вполне сравнима с той, которую мы имеем на тепловых и атомных электростанциях. Кроме того, ГеоТЭС не наносит урона экологии, не загрязняет выбросами окружающую среду.

     Использование тепла земных недр весьма перспективно с позиций охраны окружающей среды. В настоящее время во многих странах мира для выработки электроэнергии и отопления зданий, подогрева теплиц и парников используется тепло горячих источников. Речь идет об огромных резервах экологически чистой тепловой энергии, о возможности с большим экономическим эффектом заменить до 1,5 млн т органического топлива в важнейших отраслях, включая сельское и коммунальное хозяйства.

      Геотермальные электростанции по компоновке, оборудованию, эксплуатации мало отличаются от традиционных ТЭС и практически не вызывают экологических последствий. Температура месторождений геотермальных вод Камчатки доходит до 257°С, глубина залегания - 1200 м. Выявленные в этом районе тепловые ресурсы могли бы обеспечить работу геотермальных электростанций общей мощностью 350-500 МВт.

      Сравнительные характеристики экономической эффективности нетрадиционных энергоисточников приводятся в таблице 3.

 Таблица 3- Сравнительная характеристика различных способов получения энергии 
 

Тип 
электростанции
Удельный съем энергии с единицы площади  занимаемой земли (Вт/м2) Удельные 
капиталовложения 
(отн. ед.)
Ветровая 0,4 4,5
Солнечная 30 3
Геотермальная 4 3
Атомная 1300 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      ЗАКЛЮЧЕНИЕ 

       На  основании вышеизложенного можно  сделать следующие выводы:

      1. На современном этапе тепловые электростанции выбрасывают в атмосферу около 20% от общего количества всех вредных отходов. Они существенно влияют на окружающую среду района их расположения и на состояние биосферы в целом. Наиболее вредны конденсационные электрические станции, работающие на низкосортных видах топлива.

      2. Одним из важнейших воздействий  гидроэнергетики на окружающую среду является отчуждение значительных площадей плодородных земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн га земель. Однако ГЭС обладает жизнесберегающей функцией - выработка каждого млрд кВтч электроэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год.

      3. Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Надежность, безопасность и экономическая эффективность атомных электростанций опирается не только на жесткую регламентацию процесса функционирования АЭС, но и на сведение до абсолютного минимума влияния АЭС на окружающую среду. Оценивая перспективы развития мировой атомной энергетики, большинство авторитетных международных организаций, связанных с исследованием глобальных топливно-энергетических проблем, предполагает, что после 2010-2020 гг. в мире вновь возрастет потребность в широком строительстве АЭС.

      4. Решая задачу уменьшения воздействия на окружающую среду традиционных методов получения энергии наука и производство изучают возможности получения энергии за счет альтернативных (нетрадиционных) ресурсов, таких, как энергия ветра, солнца, геотермальная и энергия волн и других источников, которые относятся к неисчерпаемым и экологически чистым.

СПИСОК  ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 

1) Банников А.Г., Рустамов А.К., Вакулин А.А. Охрана природы : Учеб. для

с.-х. учеб. заведений. - М.: Агропромиздат, 2008.

2) Воронков Н.А. Экология общая, социальная, прикладная: Учебник для

студентов высших учебных заведений. Пособие  для учителей.-М.:Агар, 2009.

3) Корнеева А.И. Общество и окружающая среда. - М.: Мысль, 2007.

4) Миллер Тайлер. Жизнь в окружающей среде. Перевод Алексеевой Б.А. под

редакцией Г.А. Ягодина. Москва: Прогресс. Пангея, 2010.

  1. Щинников П.А.. Природоохранные технологии на ТЭС и АЭС: конспект лекций. – Новосибирск: НГТУ, Кафедра ТЭС. – 184 с.
  2. Пугач Л.И. Энергетика и экология: Учебник. – Новосибирск: Изд-во НГТУ, 2003. – 504 с.
  3. Хван Т.А. Промышленная экология. М., Феникс, 2003
  4. Дьяков А.Ф. Основные направления развития энергетики России. М., 2001
  5. И.И. Подгорный. Энергосбережение в бюджетной сфере: опыт и предложения по распространению энергосберегающих технологий. М., 2007.
  6. В.И. Кормилицын, М.С. Цицкшивили, Ю.И. Яламов «Основы экологии», изд-во – Интерстиль, Москва 2008.

Информация о работе Экологические проблемы теплоэнергетики