Автор: Пользователь скрыл имя, 19 Апреля 2011 в 15:34, курсовая работа
В последние годы все отчетливее проявляются основные различия между системами управления и контроля сложного энергетического оборудования, с одной стороны, и системами их диагностики, с другой стороны. Системы контроля, являющиеся прообразом и составной частью современных систем мониторинга, используют, как правило, простейшие способы измерения основных физических величин. Диагностические системы строятся с учетом необходимости получения наибольшего объема информации, содержащейся, прежде всего в сигналах вибрации и шума.
Введение
1. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
2. ИЗМЕРИТЕЛЬНАЯ И АНАЛИЗИРУЮЩАЯ АППАРАТУРА
3. МЕТОДЫ ДИАГНОСТИРОВАНИЯ
ОБЪЕКТЫ ДИАГНОСТИРОВАНИЯ
Выводы
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
Наиболее
доступным средством измерения
и анализа сигналов в настоящее
время можно считать
Рис.7.Сруктура
входного устройства. AЦП - аналого - цифровой
преобразователь.
Такое
средство измерения позволяет
Подобные средства измерения и анализа сигналов не отличаются малыми габаритами и могут использоваться в лабораторных или стендовых условиях. Для измерения вибрации в полевых условиях можно воспользоваться средствами измерения и анализа, построенными по тем же правилам, но уже на базе переносных компьютеров типа Portable, Notebook или Penbook. В первые устанавливаются те же платы, что и в обычные компьютеры. Ряд модификаций второго и третьего типа компьютеров имеет дополнительные входы по стандарту РС-Сard. В этом же стандарте выпускаются звуковые карты или карты с устройствами ввода аналоговых сигналов. Тогда для их измерения и анализа достаточно иметь эту карту и входное устройство, включающее датчик вибрации (шума), источник для его питания и устройство согласования датчика с входной картой. Такие устройства также выпускаются рядом зарубежных фирм
Переносные устройства на базе персональных компьютеров типа Notebook и Penbook не находят широкого применения, так как для полевых условий обычно требуется компьютер промышленного исполнения, по цене сравнимый со специализированными цифровыми анализаторами сигналов. Именно такие анализаторы выпускаются многими фирмами и наиболее широко используются в практической диагностике.
Цифровые анализаторы производятся под определенную группу близких по принципу обработки сигналов технологий, и лишь немногие из них рассчитаны на использование всех известных технологий. Как правило, во всех видах анализаторов предусмотрен узкополосный спектральный анализ сигналов и очень редко - спектральный анализ огибающей полосового сигнала, необходимый для использования информационной технологии по методу огибающей. Причина состоит в том, что для такого вида анализа при ограниченных объемах памяти в анализаторе приходится вместо одного процессора, как это имеет место в персональном компьютере, иметь два параллельно работающих процессора. Один из них, сигнальный, служит для предварительной обработки высокочастотных сигналов в реальном времени. Подобный анализатор достаточно сложен и выпускается лишь некоторыми приборостроительными фирмами, в том числе тремя предприятиями России. Один из подобных анализаторов, выпускаемых А/О “Виброакустические системы и технологии”, показан на рис.1.
Анализ основных тенденций развития средств вычислительной техники показывает, что в ближайшие годы можно ожидать широкого распространения малогабаритных приборов различного назначения, в корпус которых встраивается один микрокомпьютер с большими вычислительными возможностями и стандартной операционной системой. Очевидно, что в этом направлении будет развиваться и техника для измерения и анализа виброакустических сигналов. А это, в свою очередь, приведет к ее дальнейшему удешевлению. Еще одна перспектива - использование общих информационных технологий в технической и медицинской диагностике, что может привести к росту выпуска и дальнейшему снижению цен на анализирующие приборы.
Увеличение мощности микрокомпьютеров стимулирует развитие еще одного направления в создании технических средств для диагностики машин и оборудования. Это объединение в одном приборе возможностей функциональной и тестовой диагностики.
Для
этого необходимо обеспечить возможности
многоканального анализа
Технические
средства измерения и анализа
сигналов в стационарных системах мониторинга
и диагностики машин
Рис.8. Структура
стационарной системы мониторинга и диагностики.
Количество
блоков измерения и анализа сигналов
в стационарных системах обычно определяется
числом точек контроля и предельно
допустимым интервалом между измерениями.
Количество датчиков на один блок, может
составлять от одного до нескольких десятков.
В функции блока измерений
входит и анализ вибрации или шума,
а также других физических величин
по программе, задаваемой диагностическим
центром. Алгоритмы программы
Перспектива
развития стационарных систем мониторинга
связана также с развитием
возможностей микрокомпьютеров. Результатом
этого развития может стать разделение
функций между блоками
3.
МЕТОДЫ ДИАГНОСТИРОВАНИЯ
На
протяжении многих лет методы контроля
и диагностирования машин и оборудования
по любым видам диагностических
сигналов основывались на сравнении
величины сигнала или его составляющих
с пороговыми значениями, разделяющими
множества бездефектных и дефектных
состояний. Системы контроля и диагностики,
создаваемые на базе этих методов, обеспечивали
выделение информативных
Проблемы
пользователя систем мониторинга, как
уже отмечалось, связаны с необходимостью
интерпретировать обнаруживаемые и
прогнозируемые изменения состояния.
Естественной границей, разделяющей
системы мониторинга и
Другой
важнейшей характеристикой
Первая группа - профессиональные системы диагностики, в которых оператор самостоятельно выбирает информационную технологию и средства измерения. Знания и опыт оператора-эксперта при использовании подобной системы полностью определяют глубину и достоверность диагноза и прогноза.
Вторая группа - экспертные системы диагностики, включающие в себя экспертные программы, содержащие ответы на типовые запросы оператора, т.е. помогающие оператору принимать решение в определенных ситуациях. Экспертные системы могут применяться операторами, имеющими специальную подготовку, но не обладающими знаниями и опытом экспертов.
Третья группа - системы автоматического диагностирования. Они строятся по методам, позволяющим автоматизировать постановку диагноза, формируя для оператора программу измерений, и не требуют от пользователя специальной подготовки. Время обучения оператора работе с такими диагностическими системами не превышает двух-трех дней. Впервые подобные методы и системы автоматического диагностирования, разработанные специалистами-экспертами с более, чем 30-ти летним опытом работы в военно-морском флоте и авиации, появились в начале девяностых годов в России в А/О “Виброакустические системы и технологии” . В настоящее время системы автоматического диагностирования получают широкое распространение, непрерывно расширяя номенклатуру диагностируемых машин и оборудования.
Итак, методы диагностирования машин и их узлов по вибрации и шуму следует классифицировать с учетом требований к глубине их интегрирования в методы мониторизации и с учетом задач, стоящих перед пользователем системы диагностики. Но не менее важными являются требования к проведению диагностических измерений и к глубине получаемого по этим измерениям диагноза.
Учет перечисленных требований позволяет разделить существующие методы диагностирования на следующие группы:
Методы диагностирования качества сборки машин. Они применяются в процессе и непосредственно после завершения регламентного обслуживания машин и, в частности, при выполнении работ по балансировке машин на месте их установки. Эти методы не требуют получения никакой информации от систем мониторизации и рассчитаны на использование либо в переносных системах диагностики, либо на стендах выходного контроля продукции. Особенностью этой группы методов является и возможность частичного применения тестовых методов диагностирования. Тестовым воздействием может являеться действие дополнительных центробежных сил на частоте вращения ротора после установки пробных и балансировочных масс в соответствующие плоскости балансировки. Тестовым воздействием можно считать и появление динамических сил переменной частоты, возникающих в машине во время выбега.
Из
информационных технологий, используемых
в рассматриваемых методах
Задачи создания систем автоматического диагностирования качества сборки машин перед разработчиками обычно не ставятся. Персонал, занимающийся, например, балансировкой машин, как правило, имеет высокую профессиональную подготовку и способен самостоятельно диагностировать машины по методикам, предназначенным для экспертов.
Методы диагностирования по результатам мониторинга состояния машин и оборудования.
Эти методы строятся на базе информационных технологий, используемых для мониторинга виброакустического состояния по ограниченному числу точек контроля. Как правило, они ориентированы на построение либо профессиональных, либо экспертных систем диагностики. Глубина диагноза, обеспечиваемая такими методами, обычно невелика, и используются они чаще всего для разработки программы дальнейших исследований по идентификации обнаруженных изменений вибрационного состояния.
Методы совместного мониторинга и диагностирования машин и оборудования.
Эти
методы широко используются в стационарных
системах мониторинга и диагностики,
обеспечивая более высокую
Наиболее
часто используются методы с полным
разделением функций
Информация о работе Современное состояние виброакустической диагностики машин