Автор: Пользователь скрыл имя, 25 Декабря 2011 в 11:48, курсовая работа
Стремительное развитие электроники и вычислительной техники оказалось предпосылкой для широкой автоматизации самых разнообразных процессов в промышленности, в научных исследованиях, в быту. Реализация этой предпосылки в значительной мере определялась возможностями устройств для получения информации о регулируемом параметре или процессе, т.е. возможностями датчиков.
ВВЕДЕНИЕ.
ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДАТЧИКОВ ТЕМПЕРАТУРЫ.
ОСНОВНЫЕ ТИПЫ ПОЛУПРОВОДНИКОВЫХ ДАТЧИКОВ ТЕМПЕРАТУРЫ.
Датчики температуры на основе диодов и транзисторов.
Датчики температуры на основе терморезисторов.
Пленочные полупроводниковые датчики температуры.
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ГЕОДЕЗИИ И КАРТОГРАФИИ
КУРСОВАЯ РАБОТА
ПО СХЕМОТЕХНИКЕ
ТЕМА: «ПОЛУПРОВОДНИКОВЫЕ ДАТЧИКИ
ТЕМПЕРАТУРЫ»
ПЛАН КУРСОВОЙ РАБОТЫ.
1. ВВЕДЕНИЕ
Стремительное
развитие электроники и вычислительной
техники оказалось предпосылкой для широкой
автоматизации самых разнообразных процессов
в промышленности, в научных исследованиях,
в быту. Реализация этой предпосылки в
значительной мере определялась возможностями
устройств для получения информации о
регулируемом параметре или процессе,
т.е. возможностями датчиков. Датчики,
преобразуя измерительный параметр в
выходной сигнал, который можно измерить
и оценить количественно, являются как
бы органами чувств современной техники.
Среди широкого разнообразия измерительных параметров одним из основных является температура. Ее измерение необходимо во всех сложных технологических процессах. Большое разнообразие датчиков температуры, работающих на различных физических принципах и изготовленных из различных материалов, позволяет измерять ее даже в самых труднодоступных местах – там, где другие параметры измерить невозможно. Так например, в активной зоне атомных реакторов установлены только датчики температуры, измерение которой позволяет оценить другие теплоэнергетические параметры, такие как давление, плотность, уровень теплоносителя и т.д. [1].
В
повседневной жизни, в быту также
применяются датчики
Любой
датчик, в том числе и датчик
температуры, может быть описан рядом
характеристик, совокупность которых
позволяет сравнивать датчики между
собой и целенаправленно выбирать датчики, наиболее соответствующие конкретным задачам.
Перечислим основные из этих характеристик [2]:
Зависимость представляется в именованных величинах: y – в единицах выходного сигнала или параметрах датчика, x – в единицах измеряемой величины. Для датчиков температуры – Ом/°С или мВ/К.
Для линейной части функции преобразования чувствительность датчика постоянна. Чувствительност датчика характеризует степень совершенства процесса преобразования в нем измеряемой величины.
Метрологические характеристики, в свою очередь, определяют характер и величины погрешностей измерения датчиков. Часть погрешностей могут быть случайными и они учитываются методами математической статистики. Систематические погрешности могут быть аналитически описаны и исключены из результатов измерения.
Основными видами систематических погрешностей являются:
ДАТЧИКОВ ТЕМПЕРАТУРЫ
Влияние температуры на электрофизические параметры полупроводников в основном проявляются в изменении концентрации носителей заряда, что приводит к соответствующему изменению электрической проводимости [4]. На этом принципе работают полупроводниковые терморезисторы. В качестве полупровод-
никовых датчиков температуры также используются диоды и транзисторы, где изменение концентрации носителей заряда приводит к изменению тока, протекающего через полупроводниковый прибор [4].
В датчиках температуры на основе диодов и транзисторов используют зависимость параметров p-n перехода в полупроводнике от температуры.
Исторически первым температурозависимым параметром был обратный ток диодов и транзисторов. Значение тока растет с температурой по экспоненциальному закону со скоростью порядка 10%.К-1. Однако, диапазон температур, в пределах которых возможно использование обратных токов, весьма ограничен. Верхний температурный предел применения определяется температурой их теплового пробоя.
Наибольшее распространение получило использование прямых параметров диодов и транзисторов [5]. Их существенными преимуществами перед обратными являются линейность температурной зависимости, широкий диапазон рабочих температур, высокая стабильность. Чаще всего для измерения температуры используется прямое напряжение на p-n переходе при почти постоянном токе эмиттера. Изменение прямого напряжения составляет порядка 2,5 мВ.К-1. При повышении температуры транзисторов p-n-p типа напряжение эмиттер-база из области положительных значений переходит в область отрицательных.
Так например, датчик TS-560, разработанный ФТИ им. А.Ф.Иоффе РАН (г.Санкт-Петербург) представляет собой полупроводниковый диод на основе арсенида галлия. Диапазон измерения такого датчика (4,2…500) К, основная погрешность ±0,1%, чувствительность (2…3) мВ/К, габаритные размеры 3´3 мм [2].
Известны
случаи использования в качестве
температурозависимого
На основе транзисторов, эмиттерный переход которых включен в одно из плеч моста, созданы термодатчики типа ТЭТ-1, ТЭТ-2 [5]. Первый тип используется для измерения температуры в полевых условиях в диапазоне (-10…+40) °С с основной погрешностью не более ±1 К, второй – в диапазоне (-40…+80) °С с погрешностью не более (0,3…2) К.
Температурные
пределы применимости транзисторов
в термодатчиках значительно
шире, чем при использовании
Основным
недостатком рассматриваемых
Важной характеристикой для широкого внедрения термодатчиков на основе транзисторов и диодов является стабильность их параметров. Результаты исследования долговременной стабильности термодатчиков на основе транзисторов с температурозависимым параметром – прямым напряжением на p-n переходе в зависимости от температуры и длительности эксплуатации, приведенные в [6] показывают, что погрешность измерения ими может составлять (0,01…0,15) К в первый год эксплуатации и (0,002…0,04) К - во второй год. Основными причинами нестабильности следует считать обратимый процесс гидратации-дегидратации оксидного слоя на поверхности полупроводникового кристалла и возникновение остаточных деформаций в нем вследствие неодинаковости температурных коэффициентов линейного расширения материалов деталей транзисторов [6].