Автор: Пользователь скрыл имя, 23 Ноября 2011 в 01:04, контрольная работа
Наиболее распространены ЛЭ и схемы потенциального типа. Среди существующих логических элементов (потенциальные, импульсные, импульсно-потенциальные) потенциальные ЛЭ и схемы представляют наиболее распространенный класс. Основным отличительным признаком ЛЭ и схем потенциального типа от импульсных и импульсно-потенциальных является наличие связи по постоянному току между их входами и выходами.
Вариант:12
9.
Основные характеристики
ИМС ЭСЛ серии.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ИМС ЭСЛ СЕРИИ
Наиболее распространены ЛЭ и схемы потенциального типа. Среди существующих логических элементов (потенциальные, импульсные, импульсно-потенциальные) потенциальные ЛЭ и схемы представляют наиболее распространенный класс. Основным отличительным признаком ЛЭ и схем потенциального типа от импульсных и импульсно-потенциальных является наличие связи по постоянному току между их входами и выходами. Другим отличительным признаком является то, что они могут управляться и управлять другими схемами с помощью сигналов как ограниченной (импульсные сигналы), так и не ограниченной (потенциальные сигналы) длительности.
В общем случае не исключается возможность применения в таких схемах реактивных компонентов, т.е. индуктивностей и емкостей. Последние, как правило, играют вспомогательную роль. Однако именно принципиальная возможность построения ИМС различной сложности без реактивных компонентов выгодно отличает этот класс устройств от остальных, поскольку процесс их изготовления наилучшим образом соответствует возможностям микроэлектронной технологии.
Непрерывно возрастает степень интеграции ИМС потенциального типа и сложность выполняемых ими функций. Схемотехническая реализация ИМС потенциального типа осуществляется на основе ряда типовых, базовых функциональных элементов.
Система параметров
К
параметрам, характеризующим логические
и схемотехнические возможности
ЛЭ микросхем и больших
По
виду реализуемой
логической функции
ЛЭ условно могут быть разбиты на два
класса. К первому классу относятся функциональные
элементы одноступенчатой
логики. Это простейшие ЛЭ, реализующие
функции И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ. Ко второму
классу относятся функциональные элементы
двухступенчатой логики, реализующие
более сложные функции: И-ИЛИ, ИЛИ-И, НЕ-И-ИЛИ,
И-ИЛИ-НЕ, И-ИЛИ-И и др.
Нагрузочная способность ЛЭ n определяет число входов идентичных элементов, которое может быть подключено к выходу каждого из них. При этом обеспечиваются неискаженная передача двоичных символов 0 и 1 в цифровом устройстве по цепи из произвольного числа последовательно включенных элементов при наихудших сочетаниях дестабилизирующих факторов. Дестабилизирующими факторами могут быть: изменение питающих напряжений, разброс параметров компонентов, изменение температуры и т.п.
Часто нагрузочная способность n называется коэффициентом разветвления по выходу (Краз) и выражается целым положительным числом (n=4, 5, 7, 10 и т. д.).
Чем выше нагрузочная способность ЛЭ, тем шире их логические возможности и тем меньше затраты при проектировании и построении цифрового устройства. Однако увеличение параметра n возможно до определенных пределов, поскольку при этом ухудшаются другие параметры ЛЭ: снижается быстродействие, ухудшается помехоустойчивость и увеличивается потребляемая мощность. Обычно в состав одной серии ИМС часто входят ЛЭ с различной нагрузочной способностью: основные ЛЭ с n=4…10 и буферные элементы — так называемые усилители мощности с n=20…50. Это позволяет более гибко проектировать цифровые устройства, достигая оптимальных показателей по потребляемой мощности и числу ЛЭ.
В
зависимости от частотного диапазона
работы логических МДП-микросхем (металл-диэлектрик-
Коэффициент объединения по входу m (Коб) характеризует максимальное число логических входов функционального элемента. С увеличением параметра m расширяются логические возможности микросхемы за счет выполнения функций с большим числом аргументов на одном типовом элементе И-НЕ, ИЛИ-НЕ и т. п. Однако при увеличении числа входов, как правило, ухудшаются другие параметры функционального элемента, такие как быстродействие, помехоустойчивость и нагрузочная способность.
С точки зрения возможности увеличения коэффициента объединения по входу И или по входу ИЛИ логические схемы существенно отличаются друг от друга. Например, в ИМС где функция первой логической ступени выполняется на диодах или эмиттерных переходах многоэмиттерного транзистора, увеличение числа входов не требует существенных дополнительных затрат площади кристалла. В ИМС, где функция первой логической ступени выполняется на транзисторах, увеличение параметра m требует значительного увеличения числа компонентов ЛЭ и роста площади кристалла ИМС.
В существующих сериях интегральных микросхем основные логические элементы выполняются, как правило, с небольшим числом входов . Увеличение числа входов m обеспечивается за счет введения в серию ЛЭ специального расширителя, подключение которого к основной ИМС дает возможность увеличить mили и mи до 10 и более.
К основным динамическим параметрам логического элемента относятся:
tф1 — фронт формирования уровня логической 1;
tф0 — фронт формирования уровня логического 0;
ф10 — задержка переключения из состояния 1 в состояние 0;
ф01 — задержка переключения из состояния 0 в состояние 1;
— длительность импульса;
fp — рабочая частота.
Определение этих параметров обеспечивается при сравнении сигналов на входе и выходе ЛЭ, т.е. при рассмотрении процесса передачи информации через ЛЭ.
На
рис. 1 приведены характеристики сигналов
на входе и выходе инвертора и
показаны уровни отчета, относительно
которых определяются динамические параметры
ЛЭ.
Рис. 1. К определению динамических параметров логического элемента (инвертора)
Уровням отcчета
динамических параметров ЛЭ являются
(рассматривается положительная логика,
при которой высокий уровень выходного
сигнала соответствует 1, а низкий — 0)
максимальный уровень логического 0 и
минимальный уровень логической 1. Задержка
переключения ф10 определяется как
временной интервал между уровнем 1 фронта
нарастания входного импульса (положительный
импульс) и уровнем 0 фронта спада выходного
импульса (отрицательный импульс).
Задержка переключения ф01 определяется как временной интервал между уровнем 0 фронта спада входного импульса и уровнем 1 фронта нарастания выходного импульса.
Фронты импульса, определяемые между уровнями 1 и 0 спада импульса, обозначаются tф0, между уровнями 0 и 1 нарастания импульса — tф1.
Средняя задержка фср ЛЭ определяется как полусумма задержек ф10 и ф01 и служит усредненным параметром быстродействия, используемым при расчете временных характеристик многоэлементных последовательно включенных логических микросхем.
Произведение средней задержки на число последовательно соединенных ЛЭ в устройстве дает наибольшую задержку сигнала в этом устройстве. Параметр фср приводится в технических условиях на ИМС. Для упрощения процесса расчета временных характеристик сложных логических цепей часто считают сигналы прямоугольными, т. е. tф0= tф1=0.
Помехоустойчивость. Базовый элемент ИМС в статическом режиме может находиться в одном из двух устойчивых состояний (0 или 1). По этой причине различают статическую помехоустойчивость ЛЭ по уровню 0 (Uno)и по уровню 1 (Un1). Статическая помехоустойчивость базовых элементов ИМС определяется значением напряжения, которое может быть подано на вход ИМС относительно уровня 0 или 1, не вызывая её ложного срабатывания (например, переход из состояния 1 в состояние 0 или наоборот).
Напряжение помехи либо повышает, либо понижает входное напряжение. Если на входе действует напряжение логического 0 (U0), то опасны помехи, имеющие положительную полярность, так как они повышают входное напряжение, что может привести к сбою в работе, т. е. ложному изменению выходных напряжений в цифровом устройстве. При поступлении на вход напряжения логической 1 (U1) и напряжения помехи отрицательной полярности также возможно ложное переключение. Максимально допустимые постоянные напряжения помехи положительной полярности (при напряжении логического 0 на входе) и отрицательной полярности (при напряжении логической 1 на входе) определяют помехоустойчивость ЛЭ по отношению к статическим (длительно действующим) помехам.
Внутренние
помехи в цифровом устройстве возникают
при переключении ЛЭ, поэтому их
амплитуда пропорциональна
Логическим перепадом называется разность напряжений логической 1 и логического 0:
.
Для оценки помехоустойчивости ЛЭ помимо напряжений Uп1 и Uп0 используют относительные величины:
; ,
называемые коэффициентом помехоустойчивости.
Для повышения помехоустойчивости необходимо увеличивать логический перепад и уменьшать время переключения ЛЭ из состояния 1 в состояние 0 и наоборот.
Потребляемая мощность ЛЭ (мощность, потребляемая ЛЭ от источника питания) зависит от его логического состояния, так как изменяется ток Iи.п. в цепи питания. ЛЭ потребляет ток
при ;
при .
Поэтому средняя потребляемая мощность в статическом режиме.
.
Зная
среднюю мощность и число ЛЭ в
цифровом устройстве Nл.э., можно
вычислить среднюю мощность, потребляемую
устройством; она равна
. Уменьшить потребляемую мощность можно,
снизив напряжение или ток питания. Однако
при этом понизятся помехоустойчивость,
а для многих типов ЛЭ и быстродействие.
Наиболее эффективный способ уменьшения
мощности Pср реализован в ЛЭ на
КМДП-транзисторах (комплементарный металл-диэлектрик-
Расширение
функциональных возможностей
ИМС
Функциональные возможности ИМС определяются:
Для транзисторной логики наиболее высокая нагрузочная способность достигается у TRL-ИМС (m=8…12 и n=4…5). Однако часто при синтезе конкретных цифровых устройств требуется увеличение параметра n у отдельных ИМС до 16…20, а параметр m может изменяться в пределах 1…12.
Подключение к основной логической схеме расширителей позволяет увеличивать емкость нагрузки ИМС (точка К на рис. 3, г), но приводит к снижению их быстродействия.
Для увеличения нагрузочной способности в состав серии микросхем включаются буферные ИМС, представляющие собой усилители мощности. Для обеспечения высокого быстродействия буферного усилителя, соответствующего быстродействию основных микросхем серии, применяется симметричный транзисторный выход.
Буферные
усилители обеспечивают нагрузочную
способность n>20 и работают при нагрузках
Cн>100 пФ (допустимая емкостная нагрузка
на основную вентильную схему обычно не
превышает 30 пФ). Буферная ИМС может выполнять
не только усилительные, но и логические
функции за счет параллельного включения
m-транзисторов на входе и выходе.