Автор: Пользователь скрыл имя, 18 Декабря 2011 в 22:26, реферат
Дуговая сварка – процесс, при котором теплота, необходимая для нагрева и плавления металла, получается за счет электрической дуги, возникающего между свариваемым металлом и электродом.
Под действием теплоты электрической дуги кромки свариваемых деталей и электродный металл расплавляются, образуя сварочную ванну, которая некоторое время находится в расплавленном состоянии.
При затвердевании металла образуется сварное соединение. Энергия, необходимая для образования и поддержания электрической дуги, получается от специальных источников питания постоянного или переменного тока.
Введение 3
1. История электросварки 4
2. Классификация дуговой сварки 5
3. Ручная дуговая сварка покрытыми металлическими электродами 8
3.1 Зажигание сварочной дуги 9
3.2 Положение и перемещение электрода при сварке 9
3.3 Подбор силы тока и диаметра электрода 11
4. Типы электродов (тип покрытия, функции покрытия, реакции шлак металл, газ-металл) 12
5. Классификация электродов (стандарты) 17
5.1 Классификационные признаки, которые характеризуют электроды 18
6. Сварочное оборудование 20
Заключение 26
Список литературы 27
При сварке в нижнем положении электрод имеет наклон от вертикали в сторону направления сварки. Перемещение электрода при сварке может осуществляться способами "к себе" и "от себя".
При отсутствии поперечных колебательных движений конца электрода ширина валика равна (0,8 - 1,5) d электрода. Такие швы (или валики) называют узкими, или ниточными. Их применяют при сварке тонкого металла и при наложении первого слоя в многослойном шве.
Получение
средних швов (или валиков), ширина
которых обычно не более (2 - 4) d электрода,
возможно за счет колебательных движений
конца электрода.
Рисунок 2. Основные виды траекторий поперечных колебаний конца электрода
В зависимости от длины различают короткие (250 300 мм), средние (350 1000 мм) и длинные (более 1000 мм) швы. В зависимости от размеров сечения швы выполняют однопроходными или однослойными, многопроходными или многослойными. Однопроходная сварка производительна и экономична, но металл шва недостаточно пластичен вследствие грубой столбчатой структуры металла шва и увеличенной зоны перегрева. В случае многослойной сварки каждый нижележащий валик проходит термическую обработку при наложении последующего валика, что позволяет получить измельченную структуру металла шва и соответственно повышенные механические свойства шва и сварочного соединения. Расположение слоев при многослойной сварке бывает трех видов наложения; последовательное каждого слоя по всей длине шва, "каскадным" способом и способом "горки". Оба последних способа применяют при сварке металла значительной толщины (более 20 25 мм). При выполнении многослойных швов особое внимание следует уделять качественному выполнению первого слоя в корне шва. Провар корня шва определяет прочность всего многослойного шва.
Силу сварочного тока выбирают в зависимости от марки и диаметра электрода, при этом учитывают положение шва в пространстве, вид соединения, толщину и химический состав свариваемого металла, а также температуру окружающей среды. При учете всех указанных факторов необходимо стремиться работать на максимально возможной силе тока.
Силу сварочного тока определяют по формуле
Iсв=πdэ2*j/4,
где dэ - диаметр электрода (электродного стержня), мм;
j - допускаемая плотность тока, А/мм2.
Таблица
Значения допускаемой плотности тока в электроде
Вид покрытия |
Допускаемая плотность тока j в электроде, А/мм2, при диаметре электрода dэ, мм | |||
Рудно-кислое, рутиловое | 14,0-20,0 |
11,5-16,0 |
10,0-13,5 |
9,5-12,5 |
Фтористо-кальциевое | 13,0-18,5 |
10,0-14,5 |
9,0-12,5 |
8,5-12,0 |
При приближённых подсчётах величина сварочного тока может быть определена по одной из следующих формул:
Iсв=k*dэ
Iсв=k1*dэ1,5
Iсв=dэ*(k2+α*dэ)
где dэ - диаметр электрода (электродного стержня), мм;
k1, k2, α - коэффициенты, определённые опытным путём:
k1=20…25; k2=20; α=6.
Покрытие электрода предназначено для повышения устойчивости горения дуги, образования комбинированной газошлаковой защиты, легирования и рафинирования металла. Для изготовления покрытий применяют различные материалы (компоненты).
1. Газообразующие компоненты - органические вещества: крахмал, пищевая мука, декстрин либо неорганические вещества, обычно карбонаты (мрамор СаСО3, магнезит МgСО3 и ДР-).
2.
Легирующие элементы и
3.
Ионизирующие или
4. Шлакообразующие компоненты, составляющие основу покрытия, - обычно это руды (марганцовая, титановая), минералы (ильменитовый и рутиловый концентраты, полевой шпат, кремнезем, гранит, мрамор, плавиковый шпат и др.)
5. Связующие - водные растворы силикатов натрия Na2OSiO; и калия K2OSiO2, называемые натриевым или калиевым жидким стеклом, а также натриево-калиевым жидким стеклом.
6.
Формовочные добавки —
Для повышения производительности сварки, увеличения количества дополнительного металла, вводимого в шов, в покрытии электродов может содержаться железный порошок до 60% массы покрытия. Многие материалы, входящие в состав покрытия, одновременно выполняют несколько функций, обеспечивая и газовую защиту в виде газа СО2, и шлаковую защиту в виде СаО и т. д.
Газовая защита образуется в результате диссоциации органических веществ при температурах выше 200 °С:
Cn (H2O)n.i - (п - 1)СО + (п - 1)Н2 + С;
диссоциации карбонатов при температуре ~900 °С (при парциальном давлении в газовой фазе РCO2 = 1 (кгс/см2)
СаСОз -» СаО + СО2; МgСОз -> МgО+СО2,
а также последующей диссоциации СО2:
2СО2 -+ 2СО + О2
Состав шлакообразующих может быть различным; это окислы СаО, MgO, MnO, FeO, AI2O3, SiO2, TiO2, Na2O, галогены CaF2 и др.
Виды (типы) электродных покрытий
Кислое покрытие (А) отличается тем, что в его состав входят образующие шлаковую защиту различные руды и материалы, содержащие большое количество кислорода, напри мер гематит содержит 92% Fe2O3, гранит - 66 - 71% SiO2, 15 - 21% AI2O3 и т. п. Для удаления кислорода и восстановления железа из оксидов применяют ферросплавы, для газовой за щиты вводят органические примеси - крахмал, декстрин. Сварка электродами с этим покрытием возможна на постоянном и переменном токе во всех положениях. В сварочной ванне происходит активное раскисление железа, она кипит, что способствует дегазации металла. Допускается сварка при небольшой окалине и ржавчине, однако при этом происходит повышенное разбрызгивание, и вследствие применения ферромарганца выделяется, значительное количество токсичных марганцевых соединений, что ограничивает применение таких покрытий. Кроме того, металл шва склонен к образованию кристаллизационных трещин.
При
плавлении кислых покрытий (А) большая
часть введенных в них
В результате швы обладают пониженной стойкостью против горячих трещин, ударная вязкость металла шва обычно не превышает 12 кгс-м/см2. В связи с высоким содержанием в покрытии ферромарганца и окислов железа они более токсичны, так как аэрозоли в зоне сварки и зоне дыхания сварщика содержат Большое количество вредных соединений марганца.
Основное покрытие (Б) содержит: фтористокальциевое соединение - плавиковый шпат, в котором CaF2 более 75%; карбонаты кальция - мрамор, мел с содержанием более 92% СаСО3 и ферросплавы. При расплавлении это покрытие кроме шлака выделяет большое количество защитного углекислого газа, образующегося вследствие диссоциации карбонатов. Сварка электродами с основным покрытием возможна постоянным током с обрат ной полярностью и во всех положениях. Для сварки переменным током в покрытие добавляют более активные стабилизаторы - калиевое жидкое стекло, поташ и др. Металл, наплавленный электродами с основным покрытием, обладает высокими механическими показателями, особенно ударной вязкостью при положительных и низких температурах; не склонен к образованию кристаллизационных трещин и старению; содержит минимальное количество кислорода и азота. Эти электроды применяют для сварки наиболее ответственных деталей и конструкций. Следует иметь в виду, что сварка электродами с основным покрытием должна вестись короткой дугой и при хорошей очистке свариваемых кромок от ржавчины, окалины, жира и влаги во избежание образования пористости в швах.
Эти покрытия слабо окислительные, поэтому позволяют легировать металл шва элементами с большим сродством к кислороду. Наличие большого количества соединений кальция, хорошо связывающих серу и фосфор и выводящих их в шлак, обеспечивает высокую чистоту наплавленного металла, его повышенные пластические свойства, а легирование марганцем и кремнием обеспечивает высокую прочность. Швы, выполненные такими электродами, обладают высокой стойкостью против образования горячих трещин и наиболее высокой (по сравнению с любыми другими покрытиями) ударной вязкостью, которая составляет не менее 13 кгс-м/см2 и может достигать 25 кгс-м/см2.
При использовании этих электродов металл шва склонен к образованию пор при загрязнении кромок маслом и ржавчиной, а также при увеличении толщины покрытия и длины дуги. На базе покрытий основного типа (Б) обычно составляют композиции покрытий электродов для сварки ответственных конструкций из низколегированных и углеродистых ста лей, среднелегированных сталей и всех электродов для сварки высоколегированных сталей.
Целлюлозное покрытие (Ц) содержит в основном оксицеллюлозу или аналогичные ей органические вещества, а также рутил и ферросплавы. Это покрытие при расплавлении выделяет главным образом много защитного газа и небольшое количество шлака для процесса раскисления. Электроды с этим покрытием пригодны для сварки во всех положениях на постоянном и переменном токе и употребляются в основном для сварки первого слоя стыков труб.
Рутиловое покрытие (Р) содержит 50% рутилового концентрата, в котором 50% ТЮ2, карбонаты кальция - мрамор, тальк, мусковит, магнезит, ферросплавы, целлюлозу. Газовая защита обеспечивается за счет диссоциации материалов и органической составляющей. Раскисление и легирование - ферросплавами.
Электроды с рутиловым покрытием пригодны для сварки постоянным и переменным токами во всех положениях. Они обеспечивают высокое качество наплавленного металла, обладают хорошими технологическими свойствами и применяются для сварки низкоуглеродистой стали. В международной практике приняты следующие условные обозначения видов (типов) электродных покрытий (в скобках приведено обозначение электродных покрытий по ГОСТ 9466-75):
А (А) - электроды с покрытием кислого типа;
В (Б) - электроды с покрытием основного типа;
R
(Р) - электроды с покрытием
С
(Ц) - электроды с целлюлозным
RA
- электроды с покрытием кисло-
RB
- электроды с покрытием рутил-
RC - электроды с покрытием рутил-целлюлозного типа;
S
(П) - электроды с покрытиями прочих
видов, в том числе
К физическим свойствам шлака, образующегося при плавлении электродного покрытия, относятся: