Автор: Пользователь скрыл имя, 17 Февраля 2012 в 12:37, реферат
Керамзитовый гравий — частицы округлой формы с оплавленной поверхностью и порами внутри. Керамзит получают главным образом в виде керамзитового гравия. Зерна его имеют округлую форму. Структура пористая, ячеистая. На поверхности его часто имеется более плотная корочка. Цвет керамзитового гравия обычно темно-бурый, в изломе — почти черный.
Различают четыре основные технологические схемы подготовки сырцовых гранул, или четыре способа производства керамзита: сухой, пластический, порошково-пластический и мокрый.
Сухой способ используют при наличии камнеподобного глинистого сырья (плотные сухие глинистые породы, глинистые сланцы). Он наиболее прост: сырье дробится и направляется во вращающуюся печь. Предварительно необходимо отсеять мелочь и слишком крупные куски, направив последние на дополнительное дробление. Этот способ оправдывает себя, если исходная порода однородна, не содержит вредных включений и характеризуется достаточно высоким коэффициентом вспучивания.
Наибольшее
распространение получил пласти
Качество сырцовых гранул во многом определяет качество готового керамзита. Поэтому целесообразна тщательная переработка глинистого сырья и формование плотных гранул одинакового размера. Размер гранул задается исходя из требуемой крупности керамзитового гравия и установленного для данного сырья коэффициента вспучивания.
Гранулы с влажностью примерно 20% могут сразу направляться во вращающуюся печь или, что выгоднее, предварительно подсушиваться в сушильных барабанах, в других теплообменных устройствах с использованием тепла отходящих дымовых газов вращающейся печи. При подаче в печь подсушенных гранул ее производительность может быть повышена.
Таким образом, производство керамзита по пластическому способу сложнее, чем по сухому, более энергоемко, требует значительных капиталовложений, но, с другой стороны, переработка глинистого сырья с разрушением его естественной структуры, усреднение, гомогенизация, а также возможность улучшения его добавками позволяют увеличить коэффициент вспучивания.
Порошково-пластический способ отличается от пластического тем, что вначале помолом сухого глинистого сырья получают порошок, а потом из этого порошка при добавлении воды получают пластичную глино-массу, из которой формуют гранулы, как описано выше. Необходимость помола связана с дополнительными затратами. Кроме того, если сырье недостаточно сухое, требуется его сушка перед помолом. Но в ряде случаев этот способ подготовки сырья целесообразен: если сырье неоднородно по составу, то в порошкообразном состоянии его легче перемешать и гомогенизировать; если требуется вводить добавки, то при помоле их легче равномерно распределить; если в сырье есть вредные включения зерен известняка, гипса, то в размолотом и распределенном по всему объему состоянии они уже не опасны; если такая тщательная переработка сырья приводит к улучшению вспучивания, то повышенный выход керамзита и его более высокое качество оправдывают произведенные затраты.
Мокрый (шликерный) способ заключается в разведении глины в воде в специальных больших емкостях — глиноболтушках. Влажность получаемой пульпы (шликера, шлама) _ примерно 50%. Пульпа насосами подается в шламбассейны и оттуда — во вращающиеся печи. В этом случае в части вращающейся печи устраивается завеса из подвешенных цепей. Цепи служат теплообменником: они нагреваются уходящими из печи газами и подсушивают пульпу, затем разбивают подсыхающую «кашу» на гранулы, которые окатываются, окончательно высыхают, нагреваются и вспучиваются. Недостаток этого способа — повышенный расход топлива, связанный с большой начальной влажностью шликера. Преимуществами являются достижение однородности сырьевой пульпы, возможность и простота введения и тщательного распределения добавок, простота удаления из сырья каменистых включений и зерен известняка. Этот способ рекомендуется при высокой карьерной влажности глины, когда она выше формовочной (при пластическом формовании гранул). Он может быть применен также в сочетании с гидромеханизированной добычей глины и подачей ее на завод в виде пульпы по трубам вместо применяемой сейчас разработки экскаваторами с перевозкой автотранспортом.
Керамзит, получаемый по любому из описанных выше способов, после обжига необходимо охладить. Установлено, что от скорости охлаждения зависят прочностные свойства керамзита. При слишком быстром охлаждении керамзита его зерна могут растрескаться или же в них сохранятся остаточные напряжения, которые могут проявиться в бетоне. С другой стороны, и при слишком медленном охлаждении керамзита сразу после вспучивания возможно снижение его качества из-за смятия размягченных гранул, а также в связи с окислительными процессами, в результате которых FeO переходит в Fe2O3, что сопровождается деструкцией и снижением прочности.
Сразу после вспучивания желательно быстрое охлаждение керамзита до температуры 800—900 °С для закрепления структуры и предотвращения окисления закисного железа. Затем рекомендуется медленное охлаждение до температуры 600—700 °С в течение 20 мин для обеспечений затвердевания стеклофазы без больших термических напряжений, а также формирования в ней кристаллических минералов, повышающих прочность керамзита. Далее возможно сравнительно быстрое охлаждение керамзита в течение нескольких минут.
Первый этап охлаждения керамзита осуществляется еще в пределах вращающейся печи поступающим в нее воздухом. Затем керамзит охлаждается воздухом в барабанных, слоевых холодильниках, аэрожелобах.
Для фракционирования керамзитового гравия используют грохоты, преимущественно барабанные — цилиндрические или многогранные (бураты).
Внутризаводской
транспорт керамзита —
Фракционированный
керамзит поступает на склад готовой
продукции бункерного или силосного
типа.
Способы получения.
Вспучивание глинистого
сырья на керамзит в
печах кипящего слоя
В последнее время в некоторых отраслях промышленности, особенно цветной металлургии, получил развитие метод обжига материалов в кипящем слое. Этот метод успешно опробован также в производстве цементного клинкера, извести и нового заполнителя легких бетонов — перлита. Кипящий слой образуется тогда, когда через слой материала надлежащей крупности зерен проходит восходящий поток газа со скоростью, достаточно высокой, чтобы нарушить неподвижность и создать интенсивное турбулентное движение, напоминающее кипение жидкости. При этом скорость газового потока должна быть промежуточной между минимальной скоростью, при которой зерна как бы теряют массу (скорость витания), и скоростью, при которой они выносятся из рабочей камеры аппарата (взвешенное состояние).
Внутри кипящего слоя можно сжигать твердое, жидкое и газообразное топливо или подавать для обжига теплоноситель извне. Поверхность контакта зерен обжигаемого материала и теплоносителя достигает в кипящем слое максимальной величины, вследствие чего коэффициент теплопередачи отличается весьма высокими показателями—около 209 Вт/м 2 с).
Увеличение поверхности контакта способствует ускорению тепло- и массообмена, а непрерывное перемешивание частиц материала обеспечивает выравнивание температуры в слое, что позволяет проводить процесс быстро и в небольших рабочих объемах. Процессы в кипящем слое легко регулируются и поддаются автоматизации. Как показала практика, в кипящем слое можно обрабатывать зерна твердых материалов размером от долей миллиметра до 10 мм при различной влажности, так как влага, попадающая в кипящий слой, почти мгновенно испаряется.
Наряду с большими достоинствами метод кипящего слоя обладает и рядом недостатков. Так, интенсивное движение частиц в слое и взаимное их перемещение не позволяют предсказать положения частицы в какой-либо промежуток времени. Это означает, что часть поступающих в камеру свежих частиц может скорее выйти из слоя, чем это требуется, и перегревается, что для ряда технологических процессов неприемлемо. Другой недостаток метода вытекает из условий взаимного соударения частиц и ударов их о стенки камеры, что приводит к истиранию материала и накоплению пыли, а также преждевременному износу аппарата.
Печи
для обжига в кипящем слое имеют
самую разнообразную
Места
загрузки и выгрузки материала могут
быть расположены сверху, снизу или
сбоку печи, но всегда друг против друга.
Наиболее существенной частью печи является
под, представляющий собой устройство
для равномерного распределения газа
(воздуха), поступающего в печь, по нижнему
горизонтальному сечению слоя. Каждая
рабочая камера печи в горизонтальном
сечении может быть выполнена в форме
квадрата, прямоугольника, круга и т. д.
Циркуляционный
способ
Кипящий слой псевдо ожиженного зернистого материала восходящими вверх газовыми потоками является не единственным его состоянием в этих условиях. Так, если в камеру 1 на решетку 3 через патрубок 4 засыпать гранулированный материал, то он образует плотный слой с определенной меж зерновой пустотностью. При подаче через этот слой восходящего потока газа с постепенно увеличивающейся скоростью материал сперва будет оставаться неподвижным, а сопротивление слоя будет расти с увеличением скорости газа. Когда же сила сопротивления фильтрации - газа сравняется с весом слоя зернистого материала, то дальнейший рост гидравлического сопротивления прекращается и увеличение скорости газового потока приводит к расширению слоя. При этом слой взвешивается, увеличивается в объеме, частицы приобретают подвижность. Поверхность слоя в этом случае выравнивается, и если в стенке камеры сделать отверстие 2, то через него будет вытекать струя материала. Это и послужило основанием назвать слой зернистого материала со свойствами текучести—псевдоожиженным. При дальнейшем увеличении скорости газа через псевдоожиженный слой будут прорываться пузырьки, слой начнет интенсивно перемешиваться и бурлить, напоминая кипящую жидкость, что послужило основанием назвать его в этом состоянии кипящим слоем. Характерным состоянием кипящего слоя является его относительная плотность, при которой зерна не отрываются в пространство для витания.
Новое увеличение скорости газа сопровождается выносом зерен материала из кипящего слоя.
Происходящая таким образом циркуляция частиц— подъем в фонтане центральной части слоя и опускание в периферийной — отражает новое состояние материала, получившего название фонтанирующего слоя. Циркуляция частиц здесь более интенсивна, чем в обычных псевдоожиженных слоях.
В Советском Союзе устройства с фонтанирующим слоем появились значительно раньше, чем за рубежом. Они использовались при сушке хлопка, зерна, торфа, в топочной технике и т. д. Большой интерес представляет и обжиг керамзита в фонтанирующем слое. В последние годы в ФРГ были проведены успешные опыты и предложен для практики новый циркуляционный способ производства керамзита с обжигом в фонтанирующем слое.
Построенная в 1965 г. фирмой «Деннерт» в г. Хенге близ Нюрнберга установка производительностью 400м3 керамзитового гравия в сутки с использованием метода обжига заполнителя в фонтанирующем слое характеризуется следующими особенностями.
Сырьем для производства керамзита служит тонкодисперсная легкоплавкая глина с карьерной влажностью 13—15%. При указанной влажности глина сравнительно плотная и может подвергаться тонкому дроблению без замазывания механизмов. Ее химический состав характеризуется содержанием (в %): SiO2—49,10; Fe2О3— 7,98; А1203— 21,89; MnO—0,11; CaO—3,58; MgO—1,57; SO2—1,85; R20—2,86 и ППП—11,06.
На карьере глину добывают многоковшовым экскаватором на гусеничном ходу. Параллельно фронту добычи глины установлен ленточный конвейер длиной 150 м. Предварительно глину, доставляемую с карьера. измельчают на валковой дробилке. Затем она поступает в ящичный подаватель, проходит через металлический желоб с электромагнитом для очистки от металлических включений и поступает в ударно-отражательную дисковую мельницу, где тонко измельчается и гомогенизируется при естественной влажности. Далее тонкоизмельченная глина непрерывным потоком направляется в тарельчатый гранулятор, где к ней добавляют 2—4 % воды и специальную добавку, способствующую образованию шаровидной формы гранул. По ленточному конвейеру гранулы поступают в сушильный противоточный барабан длиной 10 и диаметром 1,5 м.
После
выхода из сушильного барабана от материала
отделяются мелкие и крупные фракции,
которые направляются обратно для
повторной переработки в
При
рассмотренной системе