Автор: Пользователь скрыл имя, 21 Ноября 2012 в 22:37, курсовая работа
ЦЕЛЬЮ ДАННОЙ РАБОТЫ ЯВЛЯЕТСЯ ИЗУЧЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С НЕМЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ И УСТАНОВЛЕНИЕ ИХ ВАЖНОСТИ В ПРАКТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ.
ДЛЯ ДОСТИЖЕНИЯ ПОСТАВЛЕННОЙ ЦЕЛИ БЫЛИ ПОСТАВЛЕНЫ СЛЕДУЮЩИЕ ЗАДАЧИ:
- ПОИСК ЛИТЕРАТУРЫ ПО ДАННОЙ ТЕМЕ И ЕЕ ДЕТАЛЬНОЕ ИЗУЧЕНИЕ;
- СОПОСТАВЛЕНИЕ ПОЛУЧЕННОГО МАТЕРИАЛА ИЗ РАЗЛИЧНЫХ ИСТОЧНИКОВ;
- АНАЛИЗ ИСПОЛЬЗОВАНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С НЕМЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ.
ВВЕДЕННИЕ……………………………………………………………………………3
РАЗДЕЛ 1. ОБЩИЕ СВЕДЕНИЯ И СОСТАВ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С НЕМЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ……………………………………………………….4
РАЗДЕЛ 2. СВОЙСТВА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ПОЛИМЕРНОЙ
МАТРИЦЕЙ …………………………………………………………………………….7
2.1. СТЕКЛОПЛАСТИКИ………………………………………………………7
2.2. КАРБОВОЛОКНИТЫ (УГЛЕПЛАСТИКИ)……………………………….17
2.3. БОРОВОЛОКНИТЫ………………………………………………………22
2.4. ОРГАНОВОЛОКНИТЫ……………………………………………………25
РАЗДЕЛ 3. ПРИМЕНЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С НЕМЕТАЛЛИЧЕСКОЙ МАТРИЦЕЙ……………………………………………………………………………27
ВЫВОДЫ……………………………………………………………………………...30
ЛИТЕРАТУРА…………………………………………………………………………31
ПРИЛОЖЕНИЕ А
Производство стеклопластиков
Стеклопластик получают путем горячего прессования стекловолокна, перемешанного с синтетическими смолами. В стеклопластиках стекловолокно играет роль армирующего материала, придающего изделиям высокую механическую прочность при малой плотности.
В настоящее время существует целый ряд различных смол, используемых в производстве стеклопластиковых изделий. Наибольшее распространение получили полиэфирные, винилэфирные и эпоксидные смолы. В зависимости от метода формования, химического состава и области применения все смолы можно разделить на следующие группы:
Основные методы изготовления стеклопластиковых изделий
1. Ручное (контактное) формование
При этом методе стеклоармирующий материал вручную пропитывается смолой при помощи кисти или валиков. Затем пропитанный стекломат укладывается в форму, где он прикатывается прикаточными валиками. Прикатка осуществляется с целью удаления из ламината воздушных включений и равномерного распределения смолы по всему объему. Отверждение ламината происходит при обычной комнатной температуре, после чего изделие извлекается из формы и подвергается мехобработке (обрезка облоя, высверливание отверстий и т.д.)
Основные преимущества:
Основные недостатки:
2.
Метод напыления рубленного
Стеклонить подается в ножи пистолета,
где она рубится на короткие волокна.
Затем они в воздухе
в виде роввинга (ровницы).
Основные преимущества:
Основные недостатки:
3. Метод RTM
Стеклоармирующий материал укладывается на матрицу в виде заранее заготовленных выкроек. Затем укладывается пуансон, который прижимается к матрице при помощи прижимов. Смола подается в полость формы под рассчитанным давлением. Иногда, для облегчения прохода смолы через материал используется вакуум, который создается внутри формы. Как только смола пропитала весь стекломатериал, инжекцию останавливают и ламинат оставляют в форме до полного отверждения. Отверждение может проходить при обычной или повышенной температурах.
Основные преимущества:
Основные недостатки:
4. Метод пултрузии
Волокна подаются от катушечной рамы до ванны со смолой и затем проходят через нагретую фильеру. В фильере убираются излишки смолы, происходит профилирование ламината и отверждение материала. После этого отвержденный профиль автоматически обрезается на необходимые длины.
Основные преимущества:
Основные недостатки:
5. Метод намотки.
Этот процесс прежде всего используется для изготовления пустотелых круглых или овальных секционных компонентов, типа труб или резервуаров. Волокна пропускаются через ванну со смолой, затем через натяжные валики, служащие для натяжения волокна и удаления излишков смолы. Волокна наматываются на сердечник с необходимым сечением, угол намотки контролируется отношением скорости движения тележки к скорости вращения.
Основные преимущества:
Основные недостатки:
Высокие затраты на сердечник для больших изделий.
Рельефная лицевая поверхность.
6. Метод RFI (Resin Film Infusion).
Сухие ткани выкладываются вместе со слоями полутвердой пленки из смолы. Весь полученный пакет закрывается специальной пленкой. Сначала между пленкой и формой создается вакуум, после чего форму помещают в термошкаф или автоклав. Под воздействием температуры смола переходит в текучее состояние и благодаря вакууму пропитывает материал. После некоторого времени смола полимеризуется.
Основные преимущества:
Основные недостатки:
7. Метод препрегов.
Препрег - предварительно пропитанная смолами стеклоткань. Ткани и волокна предварительно пропитаны пред-катализированной смолой под высокой температурой и давлением. В таком виде препреги могут хранится до нескольких недель, однако для увеличения срока хранения, их хранят при пониженных температурах. Смола в препрегах находится в полутвердом состоянии. При формовании препреги укладываются на поверхность формы и закрываются вакуумным мешком. Затем происходит их нагревание до температуры примерно 120 - 180 град.C при этой температуре смола переходит в текучие состояние и препрег принимает размеры формы. Далее при дальнейшем повышении температуры происходит отверждение смолы. Дополнительное давление (до 5 атмосфер) для формования обычно обеспечивается автоклавом.
Основные преимущества:
Основные недостатки:
2.2.Углепластики.
Углепластики – это
Углепластики представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей в виде углеродных волокон (карбоволокон). Высокая энергия связи С–С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими).
В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержанию карбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6–2,5 раза. Применяется вискеризация нитевидных кристаллов TiO2, AlN и Si3N4, что дает увеличение межслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.
Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты). Эпоксифенольные карбоволокниты КМУ-1л, упрочненный углеродной лентой, и КМУ-ly на жгуте, вискеризованном нитевидными кристаллами, могут длительно работать при температуре до 200°С.
Карбоволокниты КМУ-3 и КМУ-Зл получают на эпоксианилиноформальдегидном связующем, их можно эксплуатировать при температуре до 100°С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидного связующего можно применять при температуре до 300°С.
Карбоволокниты отличаются высоким статическим и динамическим сопротивлением усталости (рис.3), сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически стойкие. После воздействия на воздухе рентгеновского излучения σИЗГ и Е почти не изменяются.
Информация о работе Композиционные материалы с неметаллической матрицей