Разработка беспроводной локальной вычислительной сети на базе образовательного комплекса

Автор: Пользователь скрыл имя, 06 Мая 2012 в 17:08, дипломная работа

Описание работы

Целью данного проекта заключается в разработке локально-вычислительной сети по Wi-Fi технологии предназначенной для реализации в образовательном комплексе ЧЮК-ЮУПИ-МПГУ.
Задачи дипломного проекта:
– Исследовать технологии беспроводной передачи данных (Wi-Fi);
– Рассмотреть архитектуру IEEE 802.11 (Wi-Fi);
– Разработать техническое задание;
– Провести тест разработанной локально-вычислительной сети по Wi-Fi технологии;
– Провести расчёт затрат на разработку локально-вычислительной сети.

Содержание

Аннотация
Введение
Глава 1 Технологии беспроводной передачи данных (Wi-Fi)
1.1 Основные технологии беспроводной передачи данных
1.2 Среднедействующие технологии беспроводной передачи данных (WiFi)
1.3 Архитектура IEEE 802.11
1.3.1 Стек протоколов IEEE 802.11
1.3.2 Уровень доступа к среде стандарта IEEE 802.11
1.3.3 Распределенный режим доступа DCF
1.3.4 Централизованный режим доступа PCF
1.4 Стандарты IEEE 802.11
1.4.1 IEEE 802.11
1.4.2 IEEE 802.11b
1.4.3 IEEE 802.11а
1.4.4 IEEE 802.11g
1.4.5 IEEE 802.11d
1.4.6 IEEE 802.11e
1.4.7 IEEE 802.11f
1.4.8 IEEE 802.11h
1.4.9 IEEE 802.11i
1.4.10 IEEE 802.11n
Глава 2 Разработка ЛВС по технологии Wi-Fi
2.1 Общие сведения
2.1.1 Назначение и цели работы
2.1.2 Требование к системе в целом
2.2 Режимы работы беспроводного оборудования
2.2.1 Точка доступа
2.2.2 Режимы WDS и WDS WITH AP
2.3.1 Техническое задание
2.3.2 Полный состав комплекса
2.3.3 Что нужно учитывать при разработке WI-FI сетей? 38
2.3.4 Сетевой аудит
2.3.5 Ортоганальное частотное раздление каналов с
мултиплексированием
2.3.6 Скоростный режимы и методы кодирования в протоколе 802.11g
2.3.7 Максимальная скорость передачи данныхв протоколе 802.11b\g
2.3.8 Классификция беспроводного сетевого обрудования
2.3.9 Выбор оборудования для беспроводной сети
2.3.10 Ресурс точки доступа 54
2.3.11 Защита беспроводной сети 54
2.4 Администрирование сети по WI-FI
2.4.1 DAP-1353
2.5 Тестирование производителтьности беспроводной сети 61
2.5.1 Алгоритм тестирования 65
Глава 3 организационно-экономическая часть 67
3.1 Описание проекта
3.2 План производства 67
3.3 Организационный план 67
3.3.1 Разработка оперативно-календарного плана
3.3.2 Определение трудоемкости этапок ОКП
3.3.3 Определение численности персонала
3.3.4 Содержание работ 70
3.4 Определение сметной стоймости разработки
Глава 4 Охрана труда и техника безопасности 75
4.1 Нормативные правовые акты по охране труда 75
4.2 Анализ потенциально опасных и вредных производственных факторов 80
4.2.1 Опасные производственные факторы 80
4.2.2 Вредные производственные факторы 81
4.2.3 Микроклимат 83
4.3 Анализ условий эксплуатации проектируемого устройства 84
4.3.1 Электрический ток 84
4.4 Пожарная безопасность 87
Заключение 90
Список использованных источников и литературы 91

Работа содержит 1 файл

Диплом версия 2.0.doc

— 1.99 Мб (Скачать)

Стандарт IEEE 802.11g является логическим развитием 802.11b и предполагает передачу данных в том же частотном диапазоне. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с, поэтому на сегодня это наиболее перспективный стандарт беспроводной связи.

При разработке стандарта 802.11g рассматривались две отчасти конкурирующие технологии: метод ортогонального частотного разделения OFDM и метод двоичного пакетного сверточного кодирования PBCC, опционально реализованный в стандарте 802.11b. В результате стандарт 802.11g содержит компромиссное решение: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC.

Набор стандартов 802.11 определяет целый ряд технологий реализации физического уровня (Physical Layer Protocol - PHY), которые могут быть использованы подуровнем 802.11 MAC. В этой главе рассматривается каждый из уровней PHY:

-                 уровень PHY стандарта 802.11 со скачкообразной перестройкой частоты (FHSS) в диапазоне 2,4 ГГц;

-                 Уровень PHY стандарта 802.11 с расширением спектра методом прямой последовательности (DSSS) в диапазоне 2,4 ГГц;

-                 уровень PHY стандарта 802.11b с комплементарным кодированием в диапазоне 2,4 ГГц;

-                 уровень PHY стандарта 802.11а с ортогональным частотным мультиплексированием (OFDM) в диапазоне 5 ГГц;

-                 расширенный физический уровень (Extended Rate Physical Layer - ERP) стандарта 802.11g в диапазоне 2,4 ГГц.

Основное назначение физических уровней стандарта 802.11 - обеспечить механизмы беспроводной передачи для подуровня MAC, а также поддерживать выполнение вторичных функций, таких как оценка состояния беспроводной среды и сообщение о нем подуровню MAC. Уровни МАС и PHY разрабатывались так, чтобы они были независимыми. Именно независимость между MAC и подуровнем PHY и позволила использовать дополнительные высокоскоростные физические уровни, описанные в стандартах 802.11b, 802.11а и 802.11g.

Каждый из физических уровней стандарта 802.11 имеет два подуровня:

-                 Physical Layer Convergence Procedure (PLCP). Процедура определения состояния физического уровня;

-                 Physical Medium Dependent (PMD). Подуровень физического уровня, зависящий от среды передачи.

На рисунке 1.8 показано, как эти подуровни соотносятся между собой и с вышестоящими уровнями в модели взаимодействия открытых систем (Open System Interconnection - OSI).

Подуровень PLCP по существу является уровнем обеспечения взаимодействия, на котором осуществляется перемещение элементов данных протокола MAC (MAC Protocol Data Units - MPDU) между МАС станциями с использованием подуровня PMD, на котором реализуется тот или иной метод передачи и приема данных через беспроводную среду. Подуровни PLCP и PMD отличаются для разных вариантов стандарта 802.11.

Перед тем как приступить к изучению физических уровней, рассмотрим одну из составляющих физического уровня, до сих пор не упомянутую, а именно – скрэмблирование.

     Рисунок 1.8 – Подуровни уровня PHY

Одна из особенностей, лежащих в основе современных передатчиков, благодаря которой данные можно передавать с высокой скоростью, - это предположение о том, что данные, которые предлагаются для передачи, поступают, с точки зрения передатчика, случайным образом. Без этого предположения многие преимущества, получаемые за счет применения остальных составляющих физического уровня, остались бы нереализованными.

Однако бывает, что принимаемые данные не вполне случайны и на самом деле могут содержать повторяющиеся наборы и длинные последовательности нулей и единиц.

Скрэмблирование (перестановка элементов) - это метод, посредством которого принимаемые данные делаются более похожими на случайные; достигается это путем перестановки битов последовательности таким образом, чтобы превратить ее из структурированной в похожую на случайную. Эту процедуру иногда называют "отбеливанием потока данных". Дескрэмблер приемника затем выполняет обратное преобразование этой случайной последовательности с целью получения исходной структурированной последовательности. Большинство способов скрэмблирования относится к числу самосинхронизирующихся; это означает, что дескрэмблер способен самостоятельно синхронизироваться со скрэмблером.

 

1.4.1 IEEE 802.11

Исходный стандарт 802.11 определяет три метода передачи на физическом уровне:

-                 передача в диапазоне инфракрасных волн;

-                 технология расширения спектра путем скачкообразной перестройки частоты (FHSS) в диапазоне 2,4 ГГц;

-                 технология широкополосной модуляции с расширением спектра методом прямой последовательности (DSSS) в диапазоне 2,4 ГГц.

Средой передачи являются инфракрасные волны диапазона 850 нм, которые генерируются либо полупроводниковым лазерным диодом, либо светодиодом (LED). Так как инфракрасные волны не проникают через стены, область покрытия LAN ограничивается зоной прямой видимости. Стандарт предусматривает три варианта распространения излучения: ненаправленную антенну, отражение от потолка и фокусное направленное излучение. В первом случае узкий луч рассеивается с помощью системы линз. Фокусное направленное излучение предназначено для организации двухточечной связи, например между двумя зданиями.

Беспроводные локальные сети FHSS поддерживают скорости передачи 1 и 2 Мбит/с. Устройства FHSS делят предназначенную для их работы полосу частот от 2,402 до 2,480 ГГц на 79 неперекрывающихся каналов (это справедливо для Северной Америки и большей части Европы). Ширина каждого из 79 каналов составляет 1 МГц, поэтому беспроводные локальные сети FHSS используют относительно высокую скорость передачи символов - 1 МГц - и намного меньшую скорость перестройки с канала на канал.

Последовательность перестройки частоты должна иметь следующие параметры: частота перескоков не менее 2,5 раз в секунду как минимум между шестью (6 МГц) каналами. Чтобы минимизировать число коллизий между перекрывающимися зонами покрытия, возможные последовательности перескоков должны быть разбиты на три набора последовательностей, длина которых для Северной Америки и большей части Европы составляет 26.

По сути, схема скачкообразной перестройки частоты обеспечивает неторопливый переход с одного возможного канала на другой таким образом, что после каждого скачка покрывается полоса частот, равная как минимум 6 МГц, благодаря чему в многосотовых сетях минимизируется возможность возникновения коллизий.

1.4.2 IEEE 802.11b

Изначально стандарт IEEE 802.11 предусматривал работу в режиме DSSS с использованием так называемой Баркеровской последовательности (Barker) длиной 11 бит: В1 = (10110111000). Каждый информационный бит замещается своим произведением по модулю 2 (операция "исключающее ИЛИ") с данной последовательностью, т. е. каждая информационная единица заменяется на B1, каждый ноль - на инверсию B1. В результате бит заменяется последовательностью 11 чипов. Далее сигнал кодируется посредством дифференциальной двух- или четырехпози-ционной фазовой модуляции (DBPSK или DQPSK, один или два чипа на символ соответственно). При частоте модуляции несущей 11 МГц общая скорость составляет в зависимости от типа модуляции 1 и 2 Мбит/с.

Стандарт IEEE 802.11b дополнительно предусматривает скорости передачи 11 и 5,5 Мбит/с. Для этого используется так называемая ССК-модуляция (Complementary Code Keying - кодирование комплементарным кодом).

1.4.3 IEEE 802.11а

Стандарт IEEE 802.11а появился практически одновременно с IEEE 802.11b, в сентябре 1999 года. Эта спецификация была ориентирована на работу в диапазоне 5 ГГц и основана на принципиально ином, чем описано выше, механизме кодирования данных - на частотном мультиплексировании посредством ортогональных несущих (OFDM).

Стандарт 802.11a определяет характеристики оборудования, применяемого в офисных или городских условиях, когда распространение сигнала происходит по многолучевым каналам из-за множества отражений.

В IEEE 802.11а каждый кадр передается посредством 52 ортогональных несущих, каждая с шириной полосы порядка 300 КГц (20 МГц/64). Ширина одного канала - 20 МГц. Несущие модулируют посредством BPSK, QPSK, а также 16- и 64-позиционной квадратурной амплитудной модуляции (QAM).

1.4.4 IEEE 802.11g

Стандарт IEEE 802.11g по сути представляет собой перенесение схемы модуляции OFDM, прекрасно зарекомендовавшей себя в 802.11а, из диапазона 5 ГГц в область 2,4 ГГц при сохранении функциональности устройств стандарта 802.11b. Это возможно, поскольку в стандартах 802.11 ширина одного канала в диапазонах 2,4 и 5 ГГц схожа - 22 МГц.

Одним из основных требований к спецификации 802.11g была обратная совместимость с устройствами 802.11b. Действительно, в стандарте 802.11b в качестве основного способа модуляции принята схема ССК (Complementary Code Keying), а в качестве дополнительной возможности допускается модуляция PBSS.

Разработчики 802.11g предусмотрели ССК-модуляцию для скоростей до 11 Мбит/с и OFDM для более высоких скоростей. Но сети стандарта 802.11 при работе используют принцип CSMA/CA - множественный доступ к каналу связи с контролем несущей и предотвращением коллизий. Ни одно устройство 802.11 не должно начинать передачу, пока не убедится, что эфир в его диапазоне свободен от других устройств. Если в зоне слышимости окажутся устройства 802.11b и 802.11g, причем обмен будет происходить между устройствами 802.11g посредством OFDM, то оборудование 802.11b просто не поймет, что другие устройства сети ведут передачу, и попытается начать трансляцию. Последствия очевидны.

Чтобы не допустить подобной ситуации, предусмотрена возможность работы в смешанном режиме - CCK-OFDM. Информация в сетях 802.11 передается кадрами. Каждый информационный кадр включает два основных поля: преамбулу с заголовком и информационное поле (рисунок 1.9).

 


Рисунок 1.9 – Кадры IEEE 802.11g в различных режимах модуляции

Преамбула содержит синхропоследовательность и код начала кадра, заголовок - служебную информацию, в том числе о типе модуляции, скорости и продолжительности передачи кадра. В режиме CCK-OFDM преамбула и заголовок модулируются методом ССК (реально - путем прямого расширения спектра DSSS посредством последовательности Баркера, поэтому в стандарте 802.11g этот режим именуется DSSS-OFDM), а информационное поле - методом OFDM. Таким образом, все устройства 802.11b, постоянно "прослушивающие" эфир, принимают заголовки кадров и узнают, сколько времени будет транслироваться кадр 802.11g. В этот период они "молчат". Естественно, пропускная способность сети падает, поскольку скорость передачи преамбулы и заголовка - 1 Мбит/с.

Основной принцип работы в сетях 802.11 - "слушать, прежде чем вещать". Но устройства 802.11b не способны услышать устройства 802.11g в OFDM-режиме. Ситуация аналогична проблеме скрытых станций: два устройства удалены настолько, что не слышат друг друга и пытаются обратиться к третьему, которое находится в зоне слышимости обоих. Для предотвращения конфликтов в подобной ситуации в 802.11 введен защитный механизм, предусматривающий перед началом информационного обмена передачу короткого кадра "запрос на передачу" (RTS) и получение кадра подтверждения "можно передавать" (CTS). Механизм RTS/CTS применим и к смешанным сетям 802.11b/g. Естественно, эти кадры должны транслироваться в режиме ССК, который обязаны понимать все устройства. Однако защитный механизм существенно снижает пропускную способность сети.

Таблица 1.1

Стандарты физического уровня

     Параметр  

802.11 DSSS

802.11 FHSS

802.11b

802.11а

802.11g

Частотный диапазон (ГГц)

       2,4

        2,4

      2,4

        5

       2,4

Максимальная скорость передачи данных (Мбит/c)

        2

         2

       11

      54

       54

Технология

     DSSS

     FHSS

     CCK

   OFDM

  OFDM

Тип модуляции (для максимальной скорости передачи)

    QPSK

    GFSK

   QPSK

64-QAM

64-QAM

Неперекрывающиеся каналы

3

3

3

15

3

 

В таблице 1.1 представлена сводная информация по параметрам физических уровней.

 

1.4.5 IEEE 802.11d

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования. Он описывает правила, касающиеся разрешенной мощности излучения передатчиков в диапазонах частот, допустимых законами.

Информация о работе Разработка беспроводной локальной вычислительной сети на базе образовательного комплекса