Автор: Пользователь скрыл имя, 03 Апреля 2013 в 14:15, отчет по практике
Стремительное развитие цифровых систем коммутации и средств передачи информации, внедрение технологий SDH привело к значительному возрастанию роли систем синхронизации в сетях телекоммуникации. Новые сферы применения и виды предоставляемых услуг также вызывают повышенные требования к характеристикам и работе сетей синхронизации.
Точная работа и тщательное планирование систем синхронизации требуется не только для того, чтобы избежать неприемлемых рабочих характеристик, но чтобы ослабить скрытые, дорогостоящие и трудноопределимые проблемы и уменьшить малозаметные взаимные влияния сетей различного подчинения.
Введение 4
1. Необходимость синхронизации 5
Основные положения 5
Влияние проскальзываний на предоставляемые услуги. 6
Необходимость синхронизации SDH. 6
Пакеты (паучки) ошибок, вызванные синхронизацией. 7
Требования к рабочим характеристикам синхронизации - Сети общего пользования. 8
Требования к рабочим характеристикам синхронизации - Корпоративная (частная сеть) 8
2. Архитектура синхронизации. 9
Основы передачи сигналов в сетях SDH 9
Мультиплексирование в сети SDH 9
Основные методы синхронизации. 10
Плезиохронная работа. 10
Иерархический передатчик - приемник. 10
Взаимная синхронизация. 11
Импульсное дополнение (стаффинг) 11
Указатели и выравнивание указателей 11
Размещение полезной нагрузки 11
Синхронизация телекоммуникаций. 13
Генераторы источника: Первичный эталонный генератор. 14
Генераторы приемника (ведомые задающие генераторы). 14
Стандарты генераторов. 15
3. Характеристики синхронизации. 16
Влияние первичного эталонного генератора. 16
Характеристики устройства. 16
Влияние генератора приемника. 16
Идеальная работа. 17
Работа в условиях стресса - сетевые генераторы. 17
Работа в условиях стресса - генераторы СРЕ. 18
Работа в режиме удержания 18
Стандарты сопряжения 19
4. Введение в планирование синхронизации. 19
Основные принципы. 19
5. Планирование синхронизации в сети SDH 21
Распределение опорного сигнала 21
Требования к источнику-размножителю синхросигналов (SSU) 21
Требования к тактированию сетевого элемента SDH 22
Заключение. 23
Литература 23
Министерство РФ по связи и информатизации
Уральский Государственный Технический Университет - УПИ
Кафедра "ТиСС"
Отчет
по производственной практике
на ОАО «ЕГУЭС Уралтелеком»
Руководитель практики от предприятия: Клубакова В.Г.
Руководитель практики от УГТУ-УПИ:
Время прохождения: с 2 августа по 30 сентября 2002 г.
Студент: Ковязин Д. А.
Екатеринбург
2002
Содержание 2
Список сокращений 3
Введение 4
1. Необходимость синхронизации 5
Основные положения 5
Влияние проскальзываний на предоставляемые услуги. 6
Необходимость синхронизации SDH. 6
Пакеты (паучки) ошибок, вызванные синхронизацией. 7
Требования к рабочим характеристикам синхронизации - Сети общего пользования. 8
Требования к рабочим характеристикам синхронизации - Корпоративная (частная сеть) 8
2. Архитектура синхронизации. 9
Основы передачи сигналов в сетях SDH 9
Мультиплексирование в сети SDH 9
Основные методы синхронизации. 10
Плезиохронная работа. 10
Иерархический передатчик - приемник. 10
Взаимная синхронизация. 11
Импульсное дополнение (стаффинг) 11
Указатели и выравнивание указателей 11
Размещение полезной нагрузки 11
Синхронизация телекоммуникаций. 13
Генераторы источника: Первичный эталонный генератор. 14
Генераторы приемника (ведомые задающие генераторы). 14
Стандарты генераторов. 15
3. Характеристики синхронизации. 16
Влияние первичного эталонного генератора. 16
Характеристики устройства. 16
Влияние генератора приемника. 16
Идеальная работа. 17
Работа в условиях стресса - сетевые генераторы. 17
Работа в условиях стресса - генераторы СРЕ. 18
Работа в режиме удержания 18
Стандарты сопряжения 19
4. Введение в планирование синхронизации. 19
Основные принципы. 19
5. Планирование синхронизации в сети SDH 21
Распределение опорного сигнала 21
Требования к источнику-
Требования к тактированию сетевого элемента SDH 22
Заключение. 23
Литература 23
Иностранные сокращения.
ADM  Ada-Drop Multiplexor Мультиплексор
ввода/вывода - МВВ
ANSI  American
National Standard Institute Американский национальный
институт стандартов
APS  Automatic
Protection Switching  Автоматическое переключение
ATM  Asynchronous
Transfer Mode  Режим асинхронной передачи
AD Administrative
Unit Административный блок
AUG  Administrative
Unit Group  Группа административных блоков
AU-PJE  AU
Pointer Justification Event Смещение указателя AU
BBE  Background
block error Блок с фоновой ошибкой
BBERBackground
block error rate Коэффициент ошибок по блокам
с фоновыми ошибками
BER  Bit
Error Rate Параметр ошибки по битам, равен
отношению количества ошибочных битов
к общему количеству переданных
BIN  Binary
Двоичное представление данных
BIP Bit
Interleaved Parity Метод контроля четности
B-ISDN
Broadband Integrated Service Digital  Широкополосная
цифровая сеть с интеграцией Networks служб
(Ш-ЦСИС)
CRC Cyclic
Redundancy Check Циклическая проверка по избыточности
CRC ERR
CRC errors Число ошибок CRC
DEMUX
Demultiplexer Демультиплексор
ETS European
Telecommunication Standard Европейский телекоммуникационный
стандарт
ETSI European
Telecommunication Standard Institute Европейский институт
стандартизации в теле-kоммуникациях,
протокол ISDN, стандартизированный ETSI
FEBE Far
End Block Error Наличие блоковой ошибки на удаленном
конце
FERF Far
End Receive Failure Наличие неисправности на удаленном
конце
HEX Hexagonal
16-ричное представление информации
НО-РОН
High-order POH Заголовок маршрута высокого
уровня
ISDN
Integrated Service Digital Networks Цифровая сеть с интеграцией
служб (ЦСИС)
ITU International
Telecommunication Union Международный Союз Электросвязи
ITU-T
International Telecommunication Union-Telephony group Международный
Союз Электросвязи подразделение телефонии
LO-POH
Low-order POH Заголовок маршрута низкого уровня
M1, М2
Management Interface 1, 2 Интерфейсы управления
MSOH Multiplexer
Section Overhead Заголовок мультиплексорной
секции
MSP Multiplex
Section Protection Цепь резервирования мультиплексорной
секции
MUX Multiplexer
Мультиплексор
OSI Open
System Interconnection Эталонная модель взаимодействия
открытых систем
РОН
Path Overhead Заголовок маршрута
PTR Pointer
Указатель в системе SDH
RGEN, REG
Regenerator Регенератор
RSOH Regenerative
Section Overhead Заголовок регенераторной секции
SDH Synchronous
Digital Hierarchy Синхронная цифровая иерархия
SDXC Synchronous
Digital Cross Connect Синхронный цифровой коммутатор
SOH Section
Overhead Секционный заголовок
STM Synchronous
Transport Module Синхронный транспортный модуль
- стандартный цифровой канал в системе
SDH
ТСМ
Tandem Connection Monitoring Мониторинг взаимного
соединения
ТМ Traffic
Management Управление графиком
TMN Telecommunications
Management Автоматизированная система управления
связью
TU Tributary
Unit Блок нагрузки
TUG Tributary
Unit Group Группа блоков нагрузки
VC Virtual
Container Виртуальный контейнер
Стремительное развитие цифровых систем коммутации и средств передачи информации, внедрение технологий SDH привело к значительному возрастанию роли систем синхронизации в сетях телекоммуникации. Новые сферы применения и виды предоставляемых услуг также вызывают повышенные требования к характеристикам и работе сетей синхронизации.
Точная работа и тщательное планирование систем синхронизации требуется не только для того, чтобы избежать неприемлемых рабочих характеристик, но чтобы ослабить скрытые, дорогостоящие и трудноопределимые проблемы и уменьшить малозаметные взаимные влияния сетей различного подчинения.
Данный документ содержит основные сведения о тактовой сетевой синхронизации. В Разделе I рассмотрены основы синхронизации и доказывается необходимость синхронизации сетей. В качестве примеров приведены некоторые виды сбое, вызванные плохим качеством синхронизации, такие как проскальзывание, пропуски кадров и пучки ошибок. Обсуждается влияние этих сбое на качество предоставляемых услуг и различных применений.
В разделе II описываются различные архитектуры построения сетей синхронизации, используемые для поддержания приемлемого качества синхронизации. В этом разделе рассмотрены первичные эталонные источники (генераторы) и приемники сетевой синхронизации. Наряду с описанием функционального назначения этих источников синхронизации приводится относительная важность каждой функции для работы и планирования сетевой синхронизации. Раздел II завершает обслуживание требований к синхронизации ETSI, ANSI и ITU.
В разделе III рассмотрены рабочие характеристики тактовой сетевой синхронизации. Показано влияние первичных эталонных генераторов, средств передачи синхронизации и приемников тактовой синхронизации на рабочие характеристики. В этом разделе показано, что частота тактовой синхронизации приемников обычно отличается от частоты первичного эталонного генератора, к которому они подсоединены. Такой сдвиг по частоте оказывает огромное влияние на рабочие характеристики сетей синхронизации.
Раздел IV раскрывает основные принципы планирования сетевой синхронизации. Также обсуждаются наиболее общие проблемы планирования сети.
Синхронизация – это средство поддержания работы всего цифрового оборудования в сети связи на одной средней скорости. Для цифровой передачи информация преобразуется в дискретные импульсы. При передаче этих импульсов через линии и узлы связи цифровой сети все ее компоненты должны синхронизироваться. Синхронизация должна существовать на трех уровнях: битовая синхронизация, синхронизация на уровне канальных интервалов (time slot) и кадровая синхронизация.
Битовая синхронизация заключается в том, что передающий и принимающий концы линии передачи работают на одной тактовой частоте, поэтому биты считываются правильно. Для достижения битовой синхронизации приемник может получать свои тактовые импульсы с входящей линии. Битовая синхронизация включает такие проблемы как джиттер линии передачи и плотность единиц. Эти проблемы поднимаются при предъявлении требований к синхронизации и системам передачи.
Синхронизация канального интервала (time slot) соединяет приемник и передатчик таким образом, чтобы канальные интервалы могли быть идентифицированы для извлечения данных. Это достигается путем использования фиксированного формата кадра для разделения байтов. Основными проблемами синхронизации на уровне канального интервала являются время изменения кадра и обнаружение потери кадра.
Кадровая синхронизация
Тактовый генератор сети, расположенный в узле источника, управляет частотой передачи через этот узел битов, кадров и канальных интервалов. Вторичный генератор сети расположенный в принимающем узле, предназначен для управления скоростью считывания информации. Целью тактовой сетевой синхронизации является согласованная работа первичного генератора и приемника с тем, чтобы принимающий узел мог правильно интерпретировать цифровой сигнал. Различие в синхронизации узлов, находящихся в одной сети, может привести к пропуску или к повторному считыванию принимающим узлом посланной на него информации. Это явление называется проскальзыванием.
Например, если оборудование, передающее информацию, работает на частоте, большей, чем частота принимающего оборудования, то приемник не может отслеживать поток информации. В этом случае приемник будет периодически пропускать часть передаваемой ему информации. Потеря информации называется проскальзыванием удаления.
В случае, если приемник работает на частоте превышающей частоту передатчика, приемник будет дублировать информацию, продолжая работать на своей частоте и все еще осуществляя связь с передатчиком. Это дублирование информации называется проскальзыванием повторения.
Для управления проскальзываниями в потоках DS1 и E1 используются специальные буферы (См. рис.1). Данные записываются в буфер принимающего оборудования с частотой первичного генератора, а считываются из буфера тактовой частотой принимающего оборудования. На практике могут применяться различные размеры буферов. Обычно буфер содержит более одного кадра. В этом случае принимающее оборудование при проскальзывании будет пропускать или повторять целый кадр. Это называется управляемым проскальзыванием.
Рис. 1 – Буфер проскальзывания.
Основной целью сетевой
Проскальзывания, однако, не являются единственными сбоями, вызванными отсутствием синхронизации. Плохая синхронизация в сетях SDH может привести к избыточному джиттеру и потере кадров при передаче цифровых сигналов, как изложено в разделе "Необходимость синхронизации SDH ". В корпоративных (частных) сетях плохая синхронизация оборудования пользователя (СРЕ) может привести к возникновению пакетов (пучков) ошибок в цифровой сети. (См. "Пакеты ошибок, вызванные синхронизацией" на стр. 8). Поэтому, несмотря на то, что минимизация проскальзываний остается основной целью синхронизации, при проектировании сетей синхронизации необходимо рассматривать и другие сбои, связанные с синхронизацией.
Влияние одного или более проскальзываний на качество предоставляемых услуг в цифровых сетях связи зависит от типа этих услуг. Ниже описано влияние одиночных проскальзываний на различные виды услуг.
При предоставлении услуг телефонной
(голосовой) связи, как показано проскальзывания
могут вызвать случайные
Как показано на рис. 2, где рассматривается
влияние управляемых
Информация о работе Отчет по производственной практике на ОАО «ЕГУЭС Уралтелеком»