Описание современных видеокарт

Автор: Пользователь скрыл имя, 16 Августа 2011 в 16:36, реферат

Описание работы

Один из компонентов компьютера, от которого требуется наибольшая производительность, это графический контроллер, являющийся сердцем всех мультимедиа систем. Фраза требуется производительность означает, что некоторые вещи происходят настолько быстро, насколько это обеспечивается пропускной способностью. Пропускная способность обычно измеряется в мегабайтах в секунду и показывает скорость, с которой происходит обмен данными между видеопамятью и графическим контроллером.

Содержание

Видеопамять 3
Для чего используется видеопамять? 5
Ускоренный Графический Порт (AGP) 6
AGP: Графические процессоры и карты. 8
Видеокарты с функцией приема и захвата аналогового видеосигнала (TV-IN) 14
Информационные источники 15

Работа содержит 1 файл

сети - копия.doc

— 326.50 Кб (Скачать)

Оглавление 

 

Видеопамять 

     Один  из компонентов компьютера, от которого требуется наибольшая производительность, это графический контроллер, являющийся сердцем всех мультимедиа систем. Фраза требуется производительность означает, что некоторые вещи происходят настолько быстро, насколько это обеспечивается пропускной способностью. Пропускная способность обычно измеряется в мегабайтах в секунду и показывает скорость, с которой происходит обмен данными между видеопамятью и графическим контроллером.

     На  производительность графической подсистемы влияют несколько факторов:

  • скорость центрального процессора (CPU)
  • скорость интерфейсной шины (PCI или AGP)
  • скорость видеопамяти
  • скорость графического контроллера

     Для увеличения производительности графической  подсистемы настолько, насколько это  возможно, приходится снижать до минимума все препятствия на этом пути. Графический  контроллер производит обработку графических функций, требующих интенсивных вычислений, в результате разгружается центральный процессор системы. Отсюда следует, что графический контроллер должен оперировать своей собственной, можно даже сказать частной, местной памятью. Тип памяти, в которой хранятся графические данные, называется буфер кадра (frame buffer). В системах, ориентированных на обработку 3D-приложений, требуется еще и наличие специальной памяти, называемой z-буфер (z-buffer), в котором хранится информация о глубине изображаемой сцены. Также, в некоторых системах может иметься собственная память текстур (texture memory), т.е. память для хранения элементов, из которых формируются поверхности объекта. Наличие текстурных карт ключевым образом влияет на реалистичность изображения трехмерных сцен.

     Появление насыщенных мультимедиа и видеорядом приложений, так же, как и увеличение тактовой частоты современных центральных  процессоров, сделало невозможным  и дальше использовать стандартную  динамическую память со случайным доступом (DRAM). Современные мультимедиа контроллеры требуют от основной системной памяти большей пропускной способности и меньшего времени доступа, чем когда-либо ранее до этого. Идя навстречу новым требованиям, производители предлагают новые типы памяти, разработанные с помощью обычных и революционных методов. Впечатляющие усовершенствования делают проблему правильного выбора типа памяти для приложения особенно актуальной и сложной.

     Производители улучшили технологии и создали новые  архитектуры в ответ на требования более высоких скоростей работы памяти. Широкий выбор новых типов памяти ставит перед производителем видеоадаптеров проблему, для какого сегмента рынка или каких приложений выбрать тот или иной тип.

     Под воздействием требований перемен полупроводниковая индустрия предлагает множество новых интерфейсов. Некоторые объединили в себе свойства существующих интерфейсов с ограниченным набором изменений, другие имеют совершенно новый дизайн и оригинальную архитектуру.

     Существующие типы памяти, доступные производителям видеоадаптеров, перечислены в нижеследующей таблице.  

Тип Свойства Резюме
3D RAM Встроенные  вычислительные средства и кэш-память, реализованные на уровне чипа. Высокая  оптимизация для использования  при выполнении трехмерных операций. Технология рабочих станций для обработки 3D графики, которая обеспечивает таким платам, как Diamond Fire GL 4000 дополнительное увеличение производительности. Контроллер RealIMAGE обеспечивает продвижение этой технологии на рынок настольных компьютеров.
Burst EDO Дополнительный  пакет регистров обеспечивает быстрый  вывод строки из последовательных адресов. Долгое время  ожидания, если следующий адрес не является соседним в последовательности.
CDRAM Предшественник 3D RAM со встроенным в микросхему кэшем. Работает с внешним контроллером кэш-памяти. Идеально приспособлен быть основой для текстурной памяти и может быть органичным дополнением  памяти типа 3D RAM с ее высокой пропускной способностью, например, в адаптере Diamond Fire GL 4000. Контроллер RealIMAGE обеспечивает продвижение этой технологии на рынок настольных компьютеров.
DRAM Относится к  группе промышленных стандартов. Дальнейшие совершенствования технологии DRAM основываются на низкой стоимости производства, но также произошло существенное увеличение пропускной способности. За два цикла данные считываются в и из памяти. На основе этой технологии производятся некоторые  из самых распространенных типов  памяти.
EDO DRAM Использует  стандартный интерфейс DRAM, но передача данных в и из памяти происходит с более высокой скоростью (или на более высокой частоте). Улучшение производительности достигается за счет дополнительного внешнего чередования данных графическим контроллером (интерливинг). В зависимости  от графического контроллера может  иметь производительность на уровне более дорогой двухпортовой технологии памяти, такой, как VRAM, использующейся в графических контроллерах для систем на базе ОС Windows.
MDRAM Высокая пропускная способность, низкие задержки по времени, мелкоячеистость. Компания Tseng Labs разработала контроллер, который смог использовать все преимущества архитектуры этой памяти. В среде DOS были достигнуты отличные результаты, в среде Windows всего лишь удовлетворительные.
RDRAM Возможный претендент на широкое распространение и  принятие в качестве стандарта на память с высокой производительностью. Поддерживается  ограниченным числом графических контроллеров, но со временем ситуация может измениться.
SDRAM Производится  по стандартам JEDEC, имеет большую  производительность, чем DRAM. Чаще используется в качестве основной системной памяти, нежили в графических адаптерах.
SGRAM Производится  по стандартам JEDEC, разновидность SDRAM, однопортовая. Производительность оптимизирована для  графических операций, но при этом имеет характеристики, свойственные для высокоскоростной памяти, позволяющие использовать этот тип памяти для хранения текстур и z-буферизации. Снабжена уникальными  свойствами, большими и лучшими, чем  у SDRAM, обеспечивающих высокую скорость обработки графики. Идеально подходит для графических адаптеров с одним недорогим банком памяти, использующимся для 2D/3D графики и цифрового видео.
VRAM Технология  двухпортовой памяти, которая все  еще остается лучшим решением для  создания буферов кадра с высокой  производительностью. Не является дешевым решением, но для приложений, которым требуется разрешение 1280х1024 при истинном представлении цвета (True color), особенно с двойной буферизацией, это лучший из доступных выборов.
WRAM Высокоскоростная, двухпортовая технология памяти, используемая только двумя производителями видеоадаптеров - компаниями Matrox и Number Nine. Этот тип памяти изготавливает один производитель -- Samsung. По своему дизайну этот тип памяти аналогичен VRAM и RDRAM. Нестандартный тип памяти, требующий использования  специальной технологии в контроллерах. Технология изготовления таких контроллеров запатентована, следовательно, не является общедоступной.
 
 

Для чего используется видеопамять? 

     Скорость, с которой информация поступает  на экран, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов:

  • разрешение вашего монитора
  • количество цветов, из которых можно выбирать при создании изображения
  • частота, с которой происходит обновление экрана

     Разрешение  определяется количеством пикселов на линии и количеством самих линий. Поэтому на дисплее с разрешением 1024х768, типичном для систем, использующих ОС Windows, изображение формируется каждый раз при обновлении экрана из 786,432 пикселов информации.

     Обычно  частота обновления экрана имеет значение не менее 75Hz, или циклов в секунду. Следствием мерцания экрана является зрительное напряжение и усталость глаз при длительном наблюдении за изображением. Для уменьшения усталости глаз и улучшения эргономичности изображения значение частоты обновления экрана должно быть достаточно высоким, не менее 75 Hz.

     Число допускающих воспроизведение цветов, или глубина цвета - это десятичный эквивалент двоичного значения количества битов на пиксел. Так, 8 бит на пиксел эквивалентно 28 или 256 цветам, 16-битный цвет, часто называемый просто high-color, отображает более 65,000 цветов, а 24-битный цвет, также известный, как истинный или true color, может представить 16.7 миллионов цветов. 32-битный цвет с целью избежания путаницы обычно означает отображение истинного цвета с дополнительными 8 битами, которые используются для обеспечения 256 степеней прозрачности. Так, в 32-битном представлении каждый из 16.7 миллионов истинных цветов имеет дополнительные 256 степеней доступной прозрачности. Такие возможности представления цвета имеются только в системах высшего класса и графических рабочих станциях.

     Ранее настольные компьютеры были оснащены в основном мониторами с диагональю экрана 14 дюймов. VGA разрешение 640х480 пикселов вполне и хорошо покрывало этот размер экрана. Как только размер среднего монитора увеличился до 15 дюймов, разрешение увеличилось до значения 800х600 пикселов. Так как компьютер все больше становится средством визуализации с постоянно улучшающейся графикой, а графический интерфейс пользователя (GUI) становится стандартом, пользователи хотят видеть больше информации на своих мониторах. Мониторы с диагональю 17 дюймов становятся стандартным оборудованием для систем на базе ОС Windows, и разрешение 1024х768 пикселов адекватно заполняет экран с таким размером. Некоторые пользователи используют разрешение 1280х1024 пикселов на 17 дюймовых мониторах.

     Современной графической подсистеме для обеспечения  разрешения 1024x768 требуется 1 Мегабайт памяти. Несмотря на то, что только три  четверти этого объема памяти необходимо в действительности, графическая подсистема обычно хранит информацию о курсоре и ярлыках в буферной памяти дисплея (off-screen memory) для быстрого доступа. Пропускная способность памяти определяется соотношением того, как много мегабайт данных передаются в память и из нее за секунду времени. Типичное разрешение 1024х768, при 8-битной глубине представления цвета и частоте обновления экрана 75 Hz, требует пропускной способности памяти 1118 мегабайт в секунду. Добавление функций обработки 3D графики требует увеличения размера доступной памяти на борту видеоадаптера. В современных видеоакселераторах для систем на базе Windows типичен размер установленной памяти в 4 Мб. Дополнительная память сверх необходимой для создания изображения на экране используется для z-буфера и хранения текстур.  
 

Ускоренный Графический Порт (AGP) 

      Шина персонального компьютера (PC) претерпела множество изменений  в связи с повышаемыми к  ней требованиями. Исходным расширением  шины PC была Industry Standard Architecture (ISA), которая, несмотря на свои ограничения, все еще используется для периферийных устройств с преимущественно низкой шириной полосы пропускания, как, например, звуковые карты типа Sound Blaster. Шина Peripherals Connection Interface (PCI), стандарт пришедший на смену спецификации VESA VL bus, стала стандартной системной шиной для таких быстродействующих периферийных устройств, как, например, дисковые контроллеры и графические платы. Тем не менее, внедрение 3D графики угрожает перегрузить шину PCI.

     Ускоренный  графический порт (AGP) -- это расширение шины PCI, чье назначение -- обработка  больших массивов данных 3D графики. Intel разрабатывала AGP для решения  двух проблем перед внедрением 3D графики на PCI. Во-первых, 3D графике  требуется как можно больше памяти информации текстурных карт (texture maps) и z-буфера (z-buffer). Чем больше текстурных карт доступно для 3D приложений, тем лучше выглядит конечный результат. При нормальных обстоятельствах z-буфер, который содержит информацию, относящуюся к представлению глубины изображения, использует ту же память, что и текстуры. Этот конфликт предоставляет разработчикам 3D множество вариантов для выбора оптимального решения, которое они привязывают к большой значимости памяти для текстур и z-буфера, и результаты напрямую влияют на качество выводимого изображения.

     Разработчики PC имели ранее возможность использовать системную память для хранения информации о текстурах и z-буфера, но ограничением в этом подходе была передача такой  информации через шину PCI. Производительность графической подсистемы и системной памяти ограничиваются физическими характеристиками шины PCI. Кроме того, ширина полосы пропускания PCI, или ее емкость, не достаточна для обработки графики в режиме реального времени. Чтобы решить эти проблемы, Intel разработала AGP.

     Если  определить кратко, что такое AGP, то это - прямое соединение между графической  подсистемой и системной памятью. Это решение позволяет обеспечить значительно лучшие показатели передачи данных, чем при передаче через  шину PCI, и явно разрабатывалось, чтобы удовлетворить требованиям вывода 3D графики в режиме реального времени. AGP позволит более эффективно использовать память страничного буфера (frame buffer), тем самым увеличивая производительность 2D графики также, как увеличивая скорость прохождения потока данных 3D графики через систему.

     Определением AGP, как вида прямого соединения между  графической подсистемой и системной  памятью, является соединение point-to-point. В действительности, AGP соединяет  графическую подсистему с блоком управления системной памятью, разделяя этот доступ к памяти с центральным процессором компьютера (CPU).

     Через AGP можно подключить только один тип  устройств - это графическая плата. Графические системы, встроенные в  материнскую плату и использующие AGP, не могут быть улучшены.  

     Производительность  текстурных карт

     Определение Intel, подтверждающее, что после реализации AGP становится стандартом, следует из того, что без такого решения достижение оптимальной производительности 3D графики в PC будет очень трудным. 3D графика в режиме реального времени требует прохождения очень большого потока данных графическую подсистему. Без AGP для решения этой проблемы требуется применение нестандартных устройств памяти, которые являются дорогостоящими. При применении AGP текстурная информация и данные z-буфера могут хранится в системной памяти. При более эффективном использовании системной памяти графические платы на базе AGP не требуют собственной памяти для хранения текстур и могут предлагаться уже по значительно более низким ценам.

     Теоретически PCI могла бы выполнять те же функции, что и AGP, но производительность была бы недостаточной для большинства  приложений. Intel разрабатывала AGP для  функционирования на частоте 133 MHz и  для управления памятью по совершенно другому принципу, чем это осуществляет PCI. В случае с PCI, любая информация, находящаяся в системной памяти, не является физически непрерывной. Это означает, что существует задержка при исполнении, пока информация считывается по своему физическому адресу в системной памяти и передается по нужному пути в графическую подсистему. В случае с AGP Intel создала механизм, в результате действия которого, физический адрес, по которому информация хранится в системной памяти, совершенно не важен для графической подсистемы. Это  ключевое решение, когда приложение использует системную память, чтобы получать и хранить необходимую информацию. В системе на основе AGP не имеет значения, как и где хранятся данные о текстурах, графическая подсистема имеет полный и беспроблемный доступ к требуемой информации.

Информация о работе Описание современных видеокарт