Автор: Пользователь скрыл имя, 23 Апреля 2013 в 14:45, доклад
Транзисторы — полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний. Их основа — пластинка монокристаллического полупроводника (чаще всего кремния или германия), в которой с помощью особых технологических приемов созданы, как минимум, три области с разной электропроводностью: эмиттер, база и коллектор. Электропроводность эмиттера и коллектора всегда одинаковая (р или п), базы — противоположная (п или р). Иными словами, биполярный транзистор (далее просто транзистор) содержит два р-п перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).
Uвх/R = - C(dUвх/dt) или Uвх = 1/RC ∫Uвхdt + const.
Безусловно, входным сигналом может быть и ток, в этом случае резистор R не нужен.
Рис. 4.47. Интегратор
Если остаточный дрейф по-прежнему слишком велик для конкретного случая использования интегратора, то к конденсатору С следует подключить большой резистор R2, который обеспечит стабильное смещение за счет обратной связи по постоянному току. Такое подключение приведет к ослаблению интегрирующих свойств на очень низкой частоте: ƒ < 1/R2C. На рис. 4.48 показаны интеграторы, в которых использованы переключатели для сброса на полевых транзисторах и резистор стабилизации смешения. В схемах такого типа может потребоваться резистор обратной связи с очень большим сопротивлением. На рис. 4.49 показан прием, с помощью которого большое эффективное значение сопротивления обратной связи создается за счет резисторов с относительно небольшими сопротивлениями.
Рис. 4.48. Интеграторы на основе ОУ с переключателями для сброса.
Рис. 4.49. Схемная компенсация утечки полевого транзистора. Рассмотрим интегратор с переключателем на полевом транзисторе (рис. 4.48). Ток утечки перехода сток-исток протекает через суммирующий переход даже в том случае, когда полевой транзистор находится в состоянии ВЫКЛ. Эта ошибка может быть преобладающей в интеграторе в случае использования операционного усилителя с очень малым входным током и конденсатора с небольшой утечкой.
Дифференциаторы подобны интеграторам, в них только меняются местами резистор R и конденсатор С (рис. 4.51). Инвертирующий вход ОУ заземлен, поэтому изменение входного напряжения с некоторой скоростью вызывает появление тока I = C(dUвх/dt) а следовательно, и выходного напряжения Uвх = - RC(dUвх/dt). Дифференциаторы имеют стабилизированное смещение, неприятности создают обычно шумы и нестабильность работы на высоких частотах, что связано с большим усилением ОУ и внутренними фазовыми сдвигами. В связи с этим следует ослаблять дифференцирующие свойства схемы на некоторой максимальной частоте. Обычно для этого используют метод, который показан на рис. 4.52. Компоненты R1 и С2, с помощью которых создается спад, выбирают с учетом уровня шума и ширины полосы пропускания ОУ. На высоких частотах благодаря резистору R1 и конденсатору С2 схема начинает работать как интегратор.
Рис. 4.51.
Рис. 4.52.
Простейшим компаратором является дифференциальный усилитель с большим коэффициентом усиления, построенный на основе транзисторов или операционных усилителей (рис 4.59.). В зависимости от знака разности входных напряжений операционный усилитель оказывается в положительном или отрицательном насыщении. Коэффициент усиления по напряжению обычно превышает 100 000, поэтому, для того чтобы выход усилителя не насыщался, напряжение на входах должно быть равно долям милливольта. в связи с тем что в схеме нет отрицательной обратной связи, она не подчиняется правилу I; напряжения на входах неодинаковы; б) отсутствие отрицательной обратной связи приводит к тому, что входной импеданс (импеданс для дифференциального сигнала) не стремится принять высокое значение, характерное для операционного усилителя. В результате при срабатывании переключателя наблюдается изменение нагрузки и изменение (небольшое) входного тока - если импеданс управляющей схемы очень велик, то могут возникнуть весьма странные явления; в) в некоторых компараторах размах дифференциального входного сигнала ограничен и составляет иногда всего + 5 В. Внимательно изучайте спецификации на интегральные схемы! Простейшая схема компаратора, представленная на рис 4.60, имеет два недостатка. При медленно изменяющемся входном сигнале напряжение на выходе также может изменяться достаточно медленно. Более того, если во входном сигнале присутствует шум, то на выходе может происходить дребезг в те моменты, когда напряжение на входе проходит через точку переключения (рис. 4.61). Оба недостатка позволяет устранить положительная обратная связь (рис. 4.62). Резистор R3 создает в схеме два порога срабатывания в зависимости от состояния выхода. Для приведенного примера нижний порог срабатывания определяется уровнем 4,76 В при условии, что напряжение на выходе равно потенциалу земли (высокий уровень на входе); когда напряжение на выходе равно + 5 В, то порог определяется уровнем 5,0 В. Вероятность того, что шумовой сигнал на входе вызовет многократные переключения выхода, в данном случае меньше (рис. 4.63). Кроме того, положительная обратная связь обеспечивает быстрое переключение выхода независимо от скорости изменения входного колебания. (Для того чтобы еще больше увеличить скорость переключения, к резистору R3 часто подключают небольшой ускоряющий конденсатор емкостью 10 - 100 пФ.) Эта схема и называется триггером Шмитта. Для тригеров Шмитта с небольшим гистерезисом процедура разработки проста. Воспользуемся схемой, приведенной на рис 4.62, б. Сначала выберем резистивный делитель (R1R2), чтобы приблизительно установить правильное пороговое напряжение; если вы хотите, чтобы пороговое напряжение было близко к потенциалу земли, нужно воспользоваться одним резистором, который включен между не инвертирующим входом и землей. Далее, выберем резистор (положительной) обратной связи R3, который обеспечит требуемый гистерезис. Напомним, что гистерезис равен выходному размаху, ослабленному резистивным делителем, образованным резисторами R3 и R1||R2. И наконец, выберем выходной «притягивающий» резистор R4, достаточно небольшой величины для обеспечения полного размаха в пределах питающего напряжения, принимая во внимание нагружающий эффект резистора R3.
Рис. 4.60.
Рис. 4.61.
Рис. 4.62.
Рис. 4.63.
Рис. 4.64.
Дискретная транзисторная схема триггера Шмитта. Для построения схемы триггера Шмитта можно также использовать обычные транзисторы (рис. 4.65). Транзисторы Т1 и Т2 имеют общий эмиттерный резистор. Важно, чтобы коллекторный резистор транзистора Т1 был больше, чем коллекторный резистор Т2. При выполнении этого условия пороговый уровень включения транзистора Т1, который превышает напряжение на эмиттере на величину падения напряжения на диоде, уменьшается при включении транзистора Т1, так как эмиттерный ток больше, если проводит транзистор Т2. Здесь, как и в рассмотренной выше интегральной схеме триггера Шмитта, наблюдается эффект гистерезиса для порогового напряжения триггера.
Рис. 4.65.