Автор: Пользователь скрыл имя, 21 Декабря 2012 в 17:48, реферат
Это самый дорогостоящий и трудоемкий из описанных в литературе методов , при разработке которого преследовалась цель обеспечить максимальную надежность межслойных соединений и внутренних проводников. Межслойные соединения в данном методе представляют собой столбики гальванически осажденной меди. Используются тонкие не фольгированные диэлектрики, отверстия в которых формируют расположение столбиков межслойной металлизации. МПП, изготовленные таким методом, не содержат отверстий для штыревых выводов электро-радиоэлементов.
Технология изготовления
многослойной печатной платы методом
наращивания
Это самый дорогостоящий и
Метод послойного наращивания заключается в последовательном наклеивании (напрессовывании) диэлектрика и выполнении печатного монтажа, повторяющегося по количеству слоев многослойной печатной платы, то есть в последовательном чередовании слоев изоляционного материала (препрега) и проводникового слоя. Соединения между проводящими элементами соседних печатных слоев производится гальваническим наращиванием меди в отверстиях изоляционного слоя. Пример структуры МПП, реализованной этим методом, показан на рис.1.
Рис. 1. Вариант структуры МПП послойного наращивания: 1 — сквозное переходное металлизированное отверстие между наружными слоями; 2 — монтажная контактная площадка; 3 — компонент с планарными выводами; 4 — основа (ядро МПП); 5 — проводники внутренних слоев; 6 — межслойные переходы (металлизированные столбики); 7 — проводники внешних слоев
Технология процесса
На заготовку фольги напрессовывают слой тонкого диэлектрика, перфорированного в местах межслойных соединений (рис. 2, а). Заготовки диэлектрика получают путем прессования листов стеклоткани (4-9 листов) с нанесением слоя клея на каждый лист. В заготовках стеклоткани и фольги пробивают фиксирующие отверстия. В перфорированные отверстия и на поверхность стеклоткани гальванически осаждают медь (рис. 2, б). Рисунок второго слоя изготовляют фотохимическим способом (рис. 2, в). На второй слой напрессовывают диэлектрик с перфорированными отверстиями (рис. 2, г). Затем наращивают контактные переходы и после соответствующей механической и химической подготовки поверхности осаждают медь на поверхность стеклоткани (рис. 2, д). Рисунок третьего слоя получают травлением (рис. 2, е). В таком же порядке можно наращивать последующие слои. Последний слой защищают наклеенным слоем диэлектрика (рис. 2, ж). На обратной стороне платы, покрытой фольгой, выполняют схему наружного слоя (рис. 2, э) и производят необходимую механическую обработку.
На платы устанавливают навесные элементы только с планарными выводами.
Этапы метода послойного наращивания:
Основные преимущества данного метода изготовления МПП :
Исключительно высокая плотность размещения проводников во всех слоях печатной платы и очень высокая плотность монтажа. Это достигается вследствие возможности выполнения межслойных переходов в любой точке платы, независимо от трассировки и расположения межслойных соединений любых смежных слоев.
Недостатки метода послойного наращивания:
Сложность послойного наращивания
(в сочетании с высокой
Новейшие технологии послойного наращивания
High Density Interconnection
Отечественная разработка технологии МПП послойного наращивания, освоенная в СССР в конце 70-х годов, до сих пор работает в ответственной аэрокосмической аппаратуре, теперь приходит к нам из-за рубежа в новом качестве в технологиях, которые называются там HDI — High Density Interconnection (высокоплотные межсоединения). Простейший пример структуры HDI показан на рис. 3.
Рис. 3. Структура HDI с послойным наращиванием двух слоев с глухими отверстиями
Неравномерность толщины
осаждений при электролизе
Но с появлением в конструкциях плат мелких отверстий эффективность этих приемов упала — начала сказываться большая вязкость электролитов для обмена внутри отверстий. Особенно это относится к широко распространенному сернокислому электролиту меднения, вязкость которого выше, чем у других известных, за счет большого содержания концентрированной серной кислоты. Продавливать этот электролит сквозь узкие отверстия затруднительно. В то же время диффузионные механизмы обмена замедлены настолько, что не соответствуют требованиям производительности процесса.
Что касается неравномерности распределения плотности тока, то она меньше поддается управлению: для обеспечения равномерности распределения тока от периферии катода к центру платы используются выравнивающие экраны, на периферии заготовки платы обязательно выполняют металлическую рамку, в общей гальванике могут менять даже форму анода, чтобы выровнять электрическое поле у прикатодной поверхности. В технологиях печатных плат главный объект металлизации — отверстия: сквозные, а теперь и глухие. Металлизация поверхности — побочный, неизбежный, ненужный процесс, которого хотелось бы избежать. Но выровнять градиенты тока в отверстиях и на поверхностях (рис. 4) никогда не удастся.
Рис. 4. Распределение тока в сквозном отверстии. Наибольший градиент тока сосредоточен на углах отверстия
В силу этого осаждение
металла в зоне отверстия идет
неравномерно, по форме напоминает
собачью кость, отчего этот
эффект получил
Рис. 5. Наибольшая толщина гальванопокрытия сосредотачивается на наибольших градиентах тока.
При использовании металлизации по рисунку (комбинированный позитивный метод) одиночно расположенные проводники могут получить недопустимо грубые наросты (рис. 6).
Рис. 6. Наросты гальванических осадков на одиночных проводниках
Для предотвращения этого
эффекта используются выравнивающие
добавки, которые создают барьерный
слой в местах наибольших градиентов,
предотвращая там утолщение металлизации.
Выравнивающие добавки (в основном
поверхностно-активные вещества) позволяют
успешно металлизировать
Конечно, вибрация и ультразвук
ускоряют обмен электролита у
катодной поверхности, но не настолько,
чтобы получить заметный эффект. Для
интенсификации продавливания электролита
через отверстия используют горизонтальные
линии, в которых электролит подается
в отверстия под большим
Что же дает нам импульсный
реверсный режим питания