Автор: Пользователь скрыл имя, 21 Декабря 2011 в 13:18, реферат
Титан по распространенности в земной коре занимает среди конструкционных металлов четвертое место, уступая лишь алюминию, железу и магнию. Титан - металл IV группы периодической системы с атомным номером 22, атомной массой 47,3, относится к переходным элементам. Титан обладает удельным весом порядка 4500 кг/м3 и довольно высокой температурой плавления, ~1665± 5оС. Модуль упругости у титана низкий Е= 112 ГПа, почти в 2 раза меньше, чем у железа и никеля. Коэффициент теплопроводности составляет 18,85 Вт/(м·К), почти в 13 раз ниже, чем у алюминия и в 4 раза ниже, чем у железа.
1.История происхождения
2.Нахождение в природе
3.Получение
4. Физические свойства
5.Химические свойства
6. Сплавы на основе титана
7.Классификация титана и его сплавов
8.Список литературы
Принятая в настоящее время классификация титановых сплавов основана на структуре, которая формируется при отжиге по промышленным режимам. Она включает:
1. a -сплавы, структура которых представлена a -фазой.
2. Псевдо- a -сплавы, структура которых представлена a - фазой и небольшим количеством b -фазы (не более 5%) или интерметаллидов.
3. (a +b ) -сплавы, структура которых представлена a - и b -фазами; сплавы этого типа также могут содержать интерметаллиды.
4. Псевдо-b -сплавы со структурой в отожженном состоянии, представленной a -фазой и большим количеством b -фазы; в этих сплавах закалкой или нормализацией из b -области можно легко получить однофазную b -структуру.
5. b -сплавы, структура
которых представлена
6. Сплавы на основе интерметаллидов.
Общая характеристика титановых сплавов
Практически все титановые сплавы, за редким исключением, легируют алюминием, который имеет следующие преимущества перед остальными легирующими компонентами:
а) широко доступен и сравнительно дешев;
б) плотность алюминия значительно меньше плотности титана, поэтому введение алюминия повышает удельную прочность сплавов;
в) алюминий эффективно упрочняет a -, (a +b )- и b - сплавы при сохранении удовлетворительной пластичности;
г) с увеличением содержания алюминия повышается жаропрочность сплавов;
д) алюминий повышает модули упругости;
е) с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости.
Однако с увеличением содержания алюминия повышается чувствительность титановых сплавов к солевой коррозии, а также уменьшается их технологическая пластичность. Поэтому если есть опасность контакта сплавов с поваренной солью при работе в интервале температур 250--550°С или необходима высокая технологическая пластичность, содержание алюминия в титановых сплавах следует ограничивать.
Титановые a -сплавы, помимо Al, легируют нейтральными упрочнителями (Sn и Zr). Весьма ценным свойством a -сплавов титана является их хорошая свариваемость; эти сплавы даже при значительном содержании алюминия однофазны, поэтому не возникает охрупчивания шва и околошовной зоны.
К недостаткам a -сплавов относится их сравнительно невысокая прочность, сплавы этого класса термически не упрочняются. При содержании более 6% (по массе) Al технологическая пластичность сплавов невелика. С увеличением содержания алюминия повышаются рабочие температуры титановых a -сплавов. Однако при этом возникает опасность их охрупчивания в результате выделения фазы a 2. Сплавы этого класса, хотя и в меньшей степени, чем титан, склонны к водородной хрупкости.
Сплав ВТ5, содержащий 5%Al отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Применяются для деталей, работающих при температурах до 400°С.
Сплав ВТ5-1, относящийся к системе Ti--Al-- Sn более технологичный, чем BT5 и предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных до 450°С.
Дисперсионно твердеющие a -сплавы представлены английским сплавом Ti+2%Cu. В отожженном и закаленном состоянии сплав малопрочен и пластичен и имеет такую же технологичность, как и технический титан. При старении сплав упрочняется на 30--50% за счет дисперсионного твердения и приобретает sВ=750--800 МПа. Из сплава Ti+2%Cu в Англии изготовляют листы и полосы. Этот сплав сваривается, причем пластичность сварного соединения практически такая же, как у основного металла.
В псевдо-a -сплавы
для повышения прочности и
жаропрочности при сохранении достаточной
технологичности и
Псевдо-a -сплавы отличаются высокой термической стабильностью, хорошей свариваемостью. Существенный недостаток псевдо-a -сплавов -- их высокая склонность к водородной хрупкости.
Эту группу представляют сплавы системы Ti--Al--Mn (ОТ4-0; ОТ4-1; ОТ4; ВТ4; ОТ4-2), обладают высокой технологической пластичностью. Сплавы хорошо свариваются всеми видами сварки. Недостатки этих сплавов: а) сравнительно невысокая прочность и жаропрочность; б) большая склонность к водородной хрупкости. С повышением содержания алюминия и марганца в этой серии сплавов прочность их возрастает, а пластичность и технологичность ухудшаются.
К этой группе принадлежат также сплавы ВТ20, ВТ18.
Сплав ВТ20 разрабатывали
как более прочный и
Сплав ВТ18 относится к наиболее жаропрочным титановым сплавам; он может длительно работать при температурах 550--600°С. Высокая жаропрочность сплава обусловлена большим содержанием в нем алюминия и циркония. Однако, в отличие от других псевдо-a -сплавов сплав ВТ18 плохо сваривается.
Большинство a - и псевдо-a -сплавов применяют в отожженном состоянии.
Наиболее благоприятным сочетанием всех свойств отличаются двухфазные сплавы, состоящие из a +b - фаз. Эти сплавы характеризуются лучшей технологической пластичностью в отожженном состоянии по сравнению с a -сплавами, высокой прочностью, способностью к термическому упрочнению закалкой и старением, меньшей склонностью к водородной хрупкости по сравнению с a и псевдо-a сплавами.
В отличие от a - и псевдо-a -сплавов a +b сплавы существенно упрочняются в результате закалки и старения.
Механические свойства отожженных (a +b )-сплавов существенно зависят от характера микроструктуры. Наибольшие различия наблюдаются для сплавов с зернистой и пластинчатой структурой. Для сплавов с зернистой структурой характерны высокая циклическая прочность, пластичность, технологичность.
Сплавы с пластинчатой структурой отличаются высокой вязкостью разрушения, ударной вязкостью, жаропрочностью при пониженных характеристиках пластичности и циклической прочности. Высокая вязкость разрушения титановых сплавов с такой структурой обусловлена сильным ветвлением трещин при их распространении.
Классическим
примером таких сплавов является
ВТ6 (Ti-6%Al-4%V) ВТ14 - Ti - 5Al - 1V - 3Mo и ВТ16 - Ti
-2,5Al -5V - 5Mo). Их применяют в отожженном
и термически упрочненном состоянии.
К этой же группе принадлежат ВТ22 (Ti
- 5Al - 5V - 5Mo - 1Fe - 1Cr) и новый сплав ВТ23 - Ti--4,5Al--4,5V--2Mo--1Cr--0,
Сплав этой группы ВТ8 (Ti - 6,5Al - 3,3Mo - 0,3Si - 0,5Zr) легирован молибденом, алюминием и небольшими количествами кремния, его структура в отожженном состоянии представлена a -фазой, b -фазой (10%) и небольшим количеством дисперсных силицидов. Сплав ВТ8 обладает высокой термической стабильностью; удовлетворительной пластичностью, но плохо сваривается, недостаточно технологичен. Сплав применяют в отожженном и термически упрочненном состоянии при температурах до 450-- 500°С.
Сплав ВТ9 в отличие
от ВТ8 дополнительно легирован
Псевдо-b -сплавы относятся к высоколегированным титановым сплавам, в которых суммарное .содержание легирующих элементов доходит до 20% и более. Хотя при закалке из b -области в этих сплавах фиксируется только b -фаза, она термически нестабильна и при старении распадается с выделением дисперсной a -фазы.
К преимуществам псевдо-b -сплавов относятся:
1. Высокая технологическая
пластичность в закаленном
2. Большой эффект
термического упрочнения, что связано
с большим пересыщением
3. Малая склонность к водородной хрупкости.
Недостатки псевдо b -сплавов:
а) невысокая термическая стабильность, в результате чего их нельзя применять для длительной работы при температурах выше 350°С;
б) неудовлетворительная свариваемость;
в) большой разброс механических свойств, вызванный химической неоднородностью сплавов в связи с высокой степенью их легирования и большой чувствительностью процесса старения к содержанию примесей внедрения;
г) сравнительно высокая плотность (5--5,1 г/см3).
Разработанные к настоящему времени псевдо-b -титановые сплавы можно разделить на две группы: а) легированные алюминием, b -стабилизаторами, а в некоторых случаях и нейтральными упрочнителями; б) легированные b -стабилизаторами и нейтральными упрочнителями.
Псевдо-b -сплав ВТ15 содержит 3-4% Al; 7- 8% Mo и 10-11,5%Cr. В закаленном состоянии сплав ВТ15 отличается невысокой прочностью, большой пластичностью (s в = 880--1000 МПа; d =12-20%) и хорошо штампуется. Затем сплав термически упрочняют старением. При старении из пересыщенного b -раствора выделяются дисперсные частицы a -фазы, которые и обеспечивают упрочнение. После закалки и старения временное сопротивление разрыву составляет 1300-1500 МПа при удлинении около 6%.
Свариваемость этих сплавов затрудняет бурный рост зерна в b -области. По указанным причинам псевдо-b -сплавы первой группы применяют ограниченно.
Сплав ВТ30 (Ti - 11Mo - 5,5Zr - 4,5Sn). Сплав ВТ30 обладает высокой технологической пластичностью в закаленном состоянии, в котором хорошо поддается холодной обработке давлением. Сплав закаливают с температуры 800°С, а затем подвергают старению при 530°С. Отличительная его особенность -- большая разница в прочностных свойствах в закаленном состоянии и после старения: временное сопротивление разрыву составляет 650--750 МПа после закалки, а после старения достигает 1400--1600 МПа.
В нашей стране в полупромышленном масштабе производят b -сплав 4201 (Ti+33%Мо), отличающийся высокой коррозионной стойкостью. В ряде областей применения он может заменять тантал, коррозионно-стойкие никелевые сплавы и даже золото и платину. Сплав отличается высокой технологической пластичностью, хорошо сваривается всеми видами сварки.
Титановые b - сплавы с термодинамически устойчивой b - фазой можно получить лишь на основе таких систем, в которых легирующие элементы имеют о.ц.к. решетку при комнатной температуре и образуют с b -титаном непрерывный ряд твердых растворов. К таким элементам принадлежат ванадий, молибден, ниобий и тантал. Однако стабильные b - фазы в этих сплавах образуются при таких высоких концентрациях компонентов, что титановые сплавы теряют основное их преимущество, а именно сравнительно малую плотность. Поэтому титановые сплавы со стабильной b - фазой не получили широкого промышленного применения.
Список литературы
1. Фрагмент справочника "Металлы и сплавы - марки и химический состав"
2. "Металловедение
и термическая обработка
3. "Металлургия цветных металлов" Н.И. Уткин
4. Металлография титана, под ред. С. Г. Глазунова и Б. А. Колачева, М., 1980