Автор: Пользователь скрыл имя, 22 Февраля 2013 в 04:40, реферат
Основными достоинствами аналитических методов, основанных на измерении радиоактивного излучения, являются низкий порог обнаружения анализируемого элемента и широкая универсальность. Радиоактивационный анализ имеет абсолютно низший порог обнаружения среди всех других аналитических методов (10-15 г). Достоинством некоторых радиометрических методик является анализ без разрушения образца, а методов, основанных на измерении естественной радиоактивности, – быстрота анализа. Ценная особенность радиометрического метода изотопного разведения заключена в возможности анализа смеси близких по химико-аналитическим свойствам элементов, таких, как цирконий – гафний, ниобий – тантал и др.
Так как пробы геологических и экологических материалов имеют сложный элементный состав, то оценка пределов обнаружения в них благородных металлов и делящихся изотопов может быть выполнена только с учетом фонового излучения.
Для анализа содержания благородных металлов в пробах в работе предложено использовать метод инструментального НАА. Инструментальный анализ выполняется с помощью гамма-спектометрических измерений продуктов активации. На основании анализа нейтронно-физических характеристик разработан перечень изотопов благородных металлов, наиболее пригодных для НАА. Показано, что благородные металлы в основном не отличаются благоприятными характеристиками для его выполнения (за исключением золота и иридия). Другой важной особенностью является то, что НАА благородных металлов, за исключением родия, удобно проводить по сравнительно долгоживущим изотопам (период полураспада от 2,7 до 74,4 суток). Таким образом, в большинстве случаев, для выполнения анализов содержания благородных металлов не требуется создание специальных устройств быстрой доставки проб (пневмопочты и т.п.),
Сложности анализа делящихся материалов заключаются в том, что в пробах они находятся в смеси друг с другом, а в процессе деления образуют продукты распада одинаковые по изотопному составу и близкие по вероятности образования. Кроме того, процесс спонтанного деления тяжелых ядер в природе приводит к образованию дополнительного количества продуктов распада, что также увеличивает порог обнаружения делящихся нуклидов в пробах.
Наиболее важными
Для любых материалов, используемых в процессе облучения проб в ИРСД, существуют ограничения, характерные только для реакторов этого типа. Ограничения определяются двумя факторами: радиационным разогревом материалов в реакторе и повышенной радиационной безопасностью при обращении с ними после облучения.
При выполнении оценки степени радиационного разогрева были выбраны материалы, имеющие широкое применение в ядерных технологиях и потенциально пригодные для проведения НАА с помощью ИРСД. Возможная степень их радиационного разогрева в реакторе была оценена расчетным путем. Исходя из результатов расчетов повышения температуры материалов, был сделан вывод, что золото, кадмий и полиэтилен могут иметь существенные ограничения при их облучении в ИРСД, вызванные возможностью расплавления. Справедливость такого вывода была подтверждена в экспериментальных работах. Размягчение и плавление полиэтилена в реакторе ИГР наблюдается при интегральном флюенсе нейтронов (0,6−0,7)·1016 см-2. При отсутствии принудительного охлаждения и полном интеграле мощности реактора ИГР происходит не только плавление, но и частичное испарение индикаторов, выполненных на основе ядерно-чистого золота. По этой причине для нейтронно-физических исследований на реакторе ИГР в качестве нейтронных индикаторов были использованы такие материалы как медь, цинк и нихром, которые в силу своих ядерно-физических свойств гораздо менее подвержены радиационному разогреву. Кроме того, при флюенсе нейтронов порядка 0,5·1016 см-2 и более происходит плавление кадмиевой фольги. Таким образом, в ИРСД имеются ограничения по использованию метода “кадмиевой разности” для определения активации проб по трем группам нейтронов (тепловой, эпитепловой и быстрой).
В качестве материалов, пригодных для изготовления устройств размещения проб в реакторе и контейнеров для облучаемых материалов, были выбраны ядерно-чистый графит и полиэтилен, как наименее подверженные активации.
Большое значение для процесса
активации исследуемых
тепловая составляющая спектра нейтронов в экспериментальных каналах реактора ИГР не превышает 50%. Наличие существенной надтепловой и быстрой составляющих спектра нейтронов с энергией нейтронов свыше 3 МэВ указывает на возможность их активного использования для активации материалов проб. При этом может быть получена дополнительная информация об элементном составе исследуемых материалов, что в дальнейшем нашло свое подтверждение в экспериментальных работах;
отличия спектров в центре и на периферии активной зоны реактора незначительны. Этот факт позволяет существенно снизить объемы работ, связанных с определением спектральных характеристик поля нейтронов во время облучения проб. Уменьшение объема работ достигается путем замены полномасштабных исследований спектра нейтронов по всему объему канала определением относительного распределения флюенса нейтронов по его высоте и спектральных характеристик в какой-либо одной контрольной точке.
В экспериментах по определению
относительных величин
Отсутствие значительных неравномерностей в нейтронном потоке внутри экспериментальных каналов реактора ИГР является еще одной отличительной особенностью, упрощающей проведение НАА. Свойство равномерности потока значительно сокращает объем работ, связанных с определением спектра и флюенса нейтронов, упрощает и делает более точной всю процедуру активационного анализа.
Рисунок №5 − Вертикальное сечение реактора ИГР
Обозначения на рисунке 1
1 − кожух;
2 − экран боковой;
3 − отражатель;
4 − активная зона (неподвижная и подвижная части);
5 − канал ионизационной камеры;
6 − канал органов регулирования;
7 − боковой экспериментальный канал;
8 − центральный
9 − канал физических измерений;
10 − канал термоэлектрического преобразователя;
11 − биологическая защита;
12 − бак с водой
13 − полость охлаждающей воды;
14 − перекрытие верхнее.
Рисунок №6 − Распределение нейтронов по высоте каналов ИГР
Учитывая потенциальные значительные размеры проб, в работе была проведена их оптимизация по условиям облучения и измерений. На основании данных об элементном составе геологических материалов была проведена оценка сечения захвата ими нейтронов. В результате последующих вычислений было установлено, что толщина пробы не должна превышать 10 мм. Основным критерием для оптимизации диаметра проб являлась приемлемая (до 20% при выполнении рядовых анализов) величина абсолютной погрешности, возникающей при определении содержания элементов, имеющих неоднородные включения (например, частица самородного золота). Предварительная оценка оптимального диаметра проб была выполнена расчетным путем. Значение оптимального диаметра проб составило 50 мм. Для подтверждения правильности принимаемых решений были проделаны эксперименты с различными по размеру пробами, содержащими самородное золото. В ходе экспериментов был выполнен статистический анализ результатов определений в пробах самородного золота.[4, 5]
Нейтронно-активационное определение эссенциально значимых микроэлементов в материнском молоке.
Оптимальным продуктом для
питания детей раннего возраста
является грудное молоко, что обусловлено
сбалансированностью пищевых
Нейтронно-активационный
анализ благодаря своей
Особенностью активационного
анализа данных объектов является их
интенсивный радиолиз в процессе
облучения с возможным
Полученные результаты позволяют выявить некоторые органические поражения в организме матери и наметить меры по предотвращению развития патологических изменений у ребенка.
Нейтронно-активационное определение содержания золота и серебра в хвостах золотодобывающих предприятий.
Нейтронно-активационный анализ широко применяется при определении содержания золота, серебра и других редких и благородных металлов в золотоносных рудах, где их содержание составляет от нескольких до десятков граммов на тонну. Для определения золота в основном применяется инструментальный вариант НАА. Однако, эксперименты показали, что в хвостах золотодобывающих промышленных объектов, где содержание золота составляет 0,07-0,1 г/т, а Na, S, Mn, Fe, Cu, As, Sb, и некоторых других - от нескольких сот граммов на тонну до 3-5 %, проведение инструментального НАА оказалось невозможным. Поэтому цель нашей работы - разработать методику определения золота и серебра в хвостах с их радиохимическим выделением. Основная сложность заключалась во вскрытии образца. Экспериментально установлено, что при его кипячении в смеси HCl:HNO3 (3:1) удается практически полностью перевести в раствор Au, Ag, As, Sb, Fe, а также Na, K, Cu, Sc и некоторые другие элементы. Исследование нерастворенного остатка показало, что химический выход золота и серебра в стадии растворения составляет почти 100 %.
Для селективного отделения
золота можно использовать анионообменные
смолы Dowex-1_8 и АВ-17 из солянокислых и азотнокислых
растворов, в которых коэффициент распределения
золота больше 103. Однако в этих условиях
невозможно селективно отделить серебро.
По нашим данным, одностадийное селективное
отделение аналитических радионуклидов
золота и серебра от мешающих можно проводить
в экстракционно-
Методика анализа: 0,05-0,07 г образца вместе с эталонами определяемых элементов облучали в вертикальном канале ВВР-СМ с плотностью потока нейтронов 1.1014 n.см-2.с-1 в течение 1-2 ч. Через день после облучения образец распаковывали, кипятили три раза в смеси HCl+HNO3 (3:1), каждый раз отделяя раствор декантацией. Полученные растворы объединяли и упаривали. Остаток растворяли в 5 мл
1 М HBr и переносили в
колонку с ТБФ (диаметр
По разработанной методике
проведены анализы более 50 образцов
для контроля содержания Au и Ag в исходном
образце и разных фракциях после
обработки СВЧ полем при