Автор: Пользователь скрыл имя, 26 Марта 2012 в 12:05, контрольная работа
Полимером называется органическое вещество, длинные молекулы которого построены из одинаковых многократно повторяющихся звеньев — мономеров. По другому данное определение можно сформулировать так: полимерами называют высокомолекулярные соединения, состоящие из одной, двух или более малых молекул (звеньев), которые связаны между собой химической связью.
1. Общая характеристика полимеров и реакций полимеризации 2
2. Классификация полимеров 4
3. Свойства полимеров 5
4. Виды полимеров 8
5. Список литературы 15
Отмеченная выше особенность химической структуры термопластов определяет их свойства — гибкость цепей и возможность смены конформаций, что и объясняет существование в них нового высокоэластического состояния, характерного для широкого диапазона температур.
Первым термопластом, нашедшим широкое применение, был целлулоид — искусственный полимер, полученный путем переработки природного — целлюлозы. Он сыграл большую роль в технике, особенно в кинематографе, но вследствие исключительной пожароопасности (по составу целлюлоза очень близка к бездымному пороху) уже в середине XX в. ее производство упало почти до нуля.
Развитие электроники, телефонной связи, радио настоятельно требовало создания новых электроизоляционных материалов с хорошими конструкционными и технологическими свойствами. Так появились искусственные полимеры, изготовленные на основе той же целлюлозы, названные по первым буквам областей применения этролами. В настоящее время лишь 2 ... 3% мирового производства полимеров составляют целлюлозные пластики, тогда как примерно 75% — синтетические термопласты, причем 90% из них приходится на долю только трех: полистирола, полиэтилена, поливинилхлорида.
Полистирол — неполярный полимер, широко применяющийся в электротехнике, сохраняющий прочность в диапазоне 210 ... ... 350 К. Благодаря введению различных добавок приобретает специальные свойства: ударопрочность, повышенную теплостойкость, антистатические свойства, атмосферостойкость, пенистость. Недостатки полистирола — хрупкость, низкая устойчивость к действию органических растворителей (толуол, бензол, четыреххлористый углерод легко растворяют полистирол; в парах бензина, скипидара, спирта он набухает).
Полистирол вспенивающийся широко используется как теплозвукоизоляционный строительный материал. В радиоэлектронике он находит применение для герметизации изделий, когда надо обеспечить минимальные механические напряжения, создать временную изоляцию от воздействия тепла, излучаемого другими элементами, или низких температур и устранить их влияние на электрические свойства.
Полиэтилен — полимер с чрезвычайно широким набором свойств и использующийся в больших объемах, вследствие чего его считают королем пластмасс. Регулируя степень кристаллизации, условия синтеза и добавки, прочность полиэтилена можно варьировать. Полиэтилен обладает исключительно высокой стойкостью против химической деструкции: даже за 10... 12 лет эксплуатации прочность его снижается незначительно. Благодаря химической чистоте и неполярному строению полиэтилен обладает высокими диэлектрическими свойствами: Они в сочетании с высокими механическими и химическими свойствами обусловили широкое применение полиэтилена в электротехнике, особенно для изоляции проводов и кабелей.
Помимо полиэтилена общего назначения выпускаются его многие специальные модификации, среди которых: антистатический, с повышенной адгезионной способностью, светостабилизированный, самозатухающий, ингибитированный (для защиты от коррозии), электропроводящий (для экранирования). Главный недостаток полиэтилена — сравнительно низкая нагревостойкость.
Фторопласт (политетрафторэтилен — ПТФЭ) — один из самых термостойких и холодостойких полимеров, сохраняет механическую прочность в интервале 3 ... 600 К. Плотность — 2,2 ... 2,5 г/см3, относительное удлинение 250 ... 500%, температура разложения не менее 673 К. Удельное сопротивление мало зависит от влажности и температуры.
Исключительно высока его химическая стойкость, в том числе длительная к воздействию морского тумана, солнечной радиации, плесневых грибков. По отношению к большинству неорганических и органических реагентов он настолько пассивен, что методы испытаний на стойкость в этих средах отсутствуют. Фторопласт обладает также высокой радиационной стойкостью и применяется для изоляции проводов на атомных электростанциях. Такие провода можно использовать и в качестве нагревателей, погруженных непосредственно в растворы кислот и щелочей. Они не боятся попадания масел, керосина, гидравлических жидкостей при повышенных температурах и широко применяются для изоляции бортовых авиационных кабелей. Обладают они преимуществом и при эксплуатации в разреженной атмосфере, где условия теплоотвода ухудшены. У фторопласта незначительна зависимость диэлектрической проницаемости от температуры, поэтому он фазостабилен — не изменяет электрическую длину в широком диапазоне температур и частот.
Негорючесть фторопласта характеризуется тем, что он способен загораться только в чистом кислороде, а это резко отличает его, например, от полиэтилена; теплота сгорания невелика — в 10 раз меньшая, чем полиэтилена; плавления при горении нет, фторопласт в пламени лишь обугливается; при горении или тлении образуется немного дыма (но дым содержит ядовитый фторфосген, поэтому при температуре выше 773 К фторопласт опасен); фторопласт горит в открытом пламени, но после его удаления горение прекращается, т. е. он неспособен распространять горение. Эти качества свидетельствуют о том, насколько незаурядным материалом является фторопласт, а также и о том, чего в будущем можно ожидать от полимеров.
У фторопласта есть недостатки, которые вполне естественно продолжают его достоинства.
1. Вследствие химической пассивности он трудно поддается склеиванию. Однако способы преодоления этой инертности уже найдены. Это либо обработка в расплаве окислителей при Т>370 К, либо в плазме тлеющего разряда в кислороде. Благодаря этому выпускаются фольгированные фторопластовые пленки и пленки с односторонним липким слоем.
2. В отличие от типичных термопластов фторопласт при повышении температуры не переходит в вязкотекучее состояние и его вязкость высока.
3. Фторопласт обладает ползучестью и плохо работает под нагрузкой.
Механические свойства его могут быть улучшены путем радиационного модифицирования и армирования стекловолокном.
Полиимид — новый класс термостойких полимеров, ароматическая природа молекул которых определяет их высокую прочность вплоть до температуры разложения, химическую стойкость, тугоплавкость. Полиимидная пленка работоспособна при 473 К (200°С) в течение нескольких лет, при 573 К — 1000 ч, при 673 К — до 6 ч. Кратковременно она не разрушается даже в струе плазменной горелки. При некоторых специфических условиях полиимид превосходит по температурной стойкости даже алюминий. Так, если к пленке или фольге прикасаются нагретым стержнем и определяется температура, при которой образец разрушается за 5 с (температура нулевой прочности), то для алюминия она составляет 788 К, для полиимида — 1088 К.
Полиимид выпускается в различных видах:
1. Пленка толщиной 8 ... 100 мкм, в том числе фольгированная, предназначенная для гибких печатных плат, шлейфов и подложек тонкопленочных ГИС.
2. Лак ПАК, стойкий после высыхания при 470 ... 520 К, ограниченно при573 К, кратковременно при 670 К.
3. Пресс-материал для получения изделий горячим прессованием при 590 К и давлении 100 МПа.
4. Пенопласт (пенополиимид) с плотностью 0,8 ... 2,5 г/см5, применяющийся в качестве тепло- и электроизоляционного материала для температур 90 ... 520 К-
5. Стеклопластик на основе полиимида, стойкий до 670 К, и углепластик, не теряющий механической прочности при 550 К.
6. Изоляционная лента, стойкая при температуре до 500 К.
Недостаток полиимида — повышенное влагопоглощение (1 ... 3% за 30 сут.), поэтому он нуждается в технологической сушке (особенно при изготовлении изделий из пресс-порошков) и защите.
Первыми реактопластами, полученными около 100 лет назад, были фенолформальдегидные смолы (ФФС). Компонентами этих смол являются фенол и формальдегид, реакция поликонденсации которых происходит при нагреве до 450 .. - 470 К. Известны два типа ФФС — резольные и новолачные, несколько отличающиеся по свойствам. Исходным сырьем для ФФС является каменный уголь, что и объясняет дешевизну и постоялый рост производства, особенно в виде теплоизоляционных пенопластов для строительной промышленности. В электронике ФФС широко применяются для изготовления слоистых пластиков, покрытий и красок (лак на основе ФФС называется бакелитовым), деталей электроизоляционной аппаратуры, сепараторов аккумуляторов и т. д. Недостатки ФФС — хрупкость, высокая вязкость олигомеров и высокая температура отверждения.
Эпоксидные смолы — продукт поликонденсации многоатомных соединений, включающих эпоксигруппу кольца. Благодаря высокой реакционной способности этих колец отверждение эпоксидных олигомеров можно осуществить с помощью многих соединений и таким образом варьировать температурно-временные режимы обработки и свойства пластмассы. Для холодного отверждения эпоксидных олигомеров применяют алифатические полиамины в количестве 5 ... 15% от массы олигомера. Жизнеспособность смеси низкая (1 ... З ч), длительность отверждения, наоборот, высокая — 24 ч, причем степень полимеризации при этом лишь 60 ... 70% и продолжает увеличиваться еще в течение 10 ... 30 сут.
Реакция отверждения смол с алифатическими полиаминами экзотермична: в большом объеме может произойти саморазогрев до температуры выше 500 К, что приводит к деструкции полимера и растрескиванию изделия. Поэтому предпочтительнее горячее отверждение, которое осуществляют ароматическими полиаминами. При изготовлении изделий важно избегать как недоотверждения, которое проявляется в повышенных диэлектрических потерях и недостаточной жесткости, так и переотверждения, сопровождающегося потерей эластичности. Достоинства эпоксидов состоят в отсутствии побочных продуктов и очень малой усадке (0,2 ... 0,5%) при отверждении, высокой смачивающей способности и адгезии к различным материалам. Механическая прочность, химическая стойкость, совместимость с другими видами смол и олигомеров (ФФС, кремнийорганическими полимерами), большой выбор отвердителей и других добавок — качества, которые делают эти материалы незаменимыми во многих отраслях техники.
Наконец, эпоксидные смолы (отвержденные) оптически прозрачны и широко применяются в оптоэлектронных приборах (фотоприемниках, светодиодах).
Свойства эпоксидных смол изменяют в широких пределах, используя различные добавки, которые делятся на следующие группы:
пластификаторы — органические соединения — олигомеры, действующие как внутренняя смазка и улучшающие эластичность и предотвращающие кристаллизацию, отделяя цепи полимера друг от друга;
наполнители — в небольших количествах вводятся для улучшения прочности и диэлектрических свойств, повышения стабильности размеров, теплостойкости;
катализаторы — для ускорения отверждения;
пигменты — для окрашивания.
Компаунды могут быть жидкими и порошкообразными, они имеют узкое назначение и поэтому выпускаются многие десятки их типов, которые можно сгруппировать следующим образом: герметики, заливочные, пропиточные, эластичные, тиксотропные.
Слоистые пластики — композиции, состоящие из волокнистого листового наполнителя — бумаги, ткани, стеклоткани, пропитанных и склеенные между собой различными полимерными связующими. Слоистые пластики отличаются от других материалов тем, что применяемый наполнитель располагается параллельными слоями. Такая структура обеспечивает высокие механические характеристики, а использование полимерных связующих — достаточно высокое удельное электрическое сопротивление и электрическую прочность.
В зависимости от материала связующего и наполнителя различают несколько типов слоистых пластиков.
Наиболее дешевый материала диэлектрических оснований — гетинакс — обладает высокими диэлектрическими свойствами, находит широкое применение в бытовой радиоаппаратуре. Выпускается гетинакс на основе ацетилированной бумаги, обладающей повышенной влагостойкостью и способной заменить стеклотекстолиты.
Текстолит обладает более высокой прочностью при сжатии и ударной вязкостью и поэтому используется также в качестве конструкционного материала, и его выпускают не только в виде листов, но и плит толщиной до 50 мм.
Стеклотекстолиты благодаря ценным свойствам наполнителя обладают наиболее высокой механической прочностью, теплостойкостью и минимальным влагопоглощением. Они имеют лучшую стабильность размеров, а электрические свойства остаются высокими и во влажной среде. Вледствие необычной твердости поверхности стеклотекстолиты износоустойчивы.
Синтетические эмали, лаки и компаунды.
Общая черта этих материалов состоит в том, что они образуют прочную твердую пленку, способную защищать, пассивировать поверхность изделий или придавать им товарный вид.
Лаки — это растворы пленкообразующих веществ (лаковой основы) в летучих жидкостях. Лаковой основой могут быть природные искусственные или синтетические полимеры, которые после нанесения пленки и испарения растворителя в результате химических реакций окисления, полимеризации или поликонденсации отверждаются, образуя плотное и прочное покрытие.
Если лак используется в виде защитной пленки, требуется, чтобы это покрытие обладало хорошей адгезией, было нехрупким, стойким к термоударам и нагреванию во влажной атмосфере. Иногда необходимо, чтобы лаковое покрытие можно было бы пропаять для повышения ремонтоспособности изделия. Большинству предъявляемых требований удовлетворяют эпоксидные лаки, но недостаток их в трудностях удаления пленки при ремонте.
Лаковые покрытия являются относительно плотными только при малой толщине, слои большей толщины отверждаются с образованием капилляров, через которые удаляются пары растворителя. Поэтому увеличение толщины покрытия неэффективно, а столь тонкие лаковые покрытия надежно служат только в атмосфере без повышенной влажности. Лаки прозрачны и бесцветны и неспособны придать изделию товарный вид.
Наиболее эффективными защитными характеристиками обладает фторосодержащий лак ФП-525. Время сушки лака велико (1 ...2ч) и значительно превышает длительность всех других операций герметизации. Большой выигрыш в производительности можно получить при сушке ультрафиолетовым излучением, когда операция завершается за 15 ... 30 с.