Определение состава стиральных порошков

Автор: Пользователь скрыл имя, 07 Января 2012 в 21:32, курсовая работа

Описание работы

Ещё лет 10-15 назад название используемых синтетических моющих средств (СМС), в особенности стиральных порошков можно было легко перечислить: Астра, Эра, Лотос, так как их набор не отличался большим разнообразием. Сегодня химическая индустрия предлагает нам широкий спектр разнообразных по составу, по воздействию, по свойствам СМС. Телевизионная реклама насыщена подобного рода информацией, но обычному человеку крайне сложно сориентироваться в столь богатом разнообразии предлагаемых средств.
Основным показателем качества стиральных порошков является способность хорошо отстирывать загрязнения, что поддается строгим измерениям. Но что именно обеспечивает эту способность? При ручной стирке порошки часто вызывают раздражение на руках у человека. Так ли безвреден стиральный порошок? Зачастую, мы, просто не задумываясь покупаем бытовую химию в магазинах, справедливо полагая, что раз данный продукт попал на прилавок, значит он не опасен ни для людей, ни для окружающей среды. Но, к сожалению, мы не можем этого сказать, современные производители гонятся за улучшением моющих свойств, что чаще всего приводит к увеличению числа фосфатов и поверхностно-активных веществ, которые не только безвредны, но и опасны для здоровья человека и природы.
В нашей работе мы хотим узнать из чего все-таки состоит порошок, его экологическую и биологическую роль, как вообще можно определить его компоненты.
Данная работа является актуальной в связи с запросом социума в сфере минимизации факторов, негативно влияющих на здоровье человека. Наше исследование позволяет выявить наиболее безопасный порошок для бытового использования. Кроме того, мы узнаем как можно определить физико-химический состав порошков. И проведем эксперимент на основе ретнгенофлуоресцентного анализа, о котором мы расскажем позже. И начать конечно же лучше с истории стирального порошка.
Еще одной целью нашей работы является получение навыков работы на современном аналитическом оборудовании и оценка возможностей применения этих приборов, в частности для определения состава стиральных порошков. В качестве примера такого прибора мы взяли EDX-800HS фирмы Shimatzu (Япония), которых находиться на кафедре «Химическая технология переработки нефти и газа» Химико-технологического факультета СамГТУ.

Содержание

Введение
1.Стиральный порошок сегодня
1.1 Исторический очерк по этапам создания стиральных порошков
1.2 Промышленное производство стиральных порошков
1.3 Состав стирального порошка
1.4 Биологическая и экологическая роль стиральных порошков
1.5 Методы определения физико-химических свойств стиральных порошков
2 Рентгенофлуоресцентный анализ
2.1 История создания РФА
2.2 Принцип действия
2.3 Область применения РФА
3 Эксперимент
3.1 Цель
3.2 Задачи
3.3 Результаты
Заключение

Работа содержит 1 файл

СМС.doc

— 779.50 Кб (Скачать)

     В 1899 г. нидерландские физики Г. Хага и К. X. Винд пропустили пучок рентгеновских лучей через узкую щель и обнаружили слабый дифракционный эффект. Отсюда они сделали вывод о волновой природе рентгеновских лучей и оценили длину волны этого излучения: она была порядка одного ангстрема (одной стомиллионной сантиметра). Для сравнения укажем, что видимый свет имеет длину волны порядка нескольких тысяч ангстрем.

     В 1904 г. английский физик Чарлз Баркла занялся проверкой гипотезы английского физика Стокса о том, что если рентгеновские лучи являются электромагнитными волнами, то они должны поляризоваться, причем поляризация должна зависеть от способа их образования в катодной трубке. Эксперимент, поставленный Барклом, подтвердил, что рентгеновские лучи представляют собой колебания электромагнитных волн, возникающих в результате торможения электронов, которые ударяют в анод рентгеновской трубки. Поляризация действительно была обнаружена, и это было воспринято как серьезный аргумент в пользу волновой природы рентгеновских лучей.

     В то же самое время, однако, выявились и некоторые факты, свидетельствующие о корпускулярном характере рентгеновских лучей. В 1908 г. Уильям Генри Брэгг исследовал процесс возникновения заряженных частиц под действием рентгеновского излечения. Он, в частности, наблюдал возникновение при этом потока электронов, на основании чего сделал вывод, что рентгеновские лучи представляют собой поток частиц, ибо подобный эффект могут вызвать только частицы. Эти опыты склонили чашу весов в сторону корпускулярной теории, и такое положение сохранилось до 1912 г., когда неожиданно было представлено блестящее доказательство волновых свойств рентгеновских лучей.

     В Мюнхенском университете, где продолжал работать Рентген, Макс фон Лауэ исследовал явления дифракции. Лауэ пришел к мысли, что расстояние между атомами в кристаллических решетках - того же порядка, что и предполагаемая длина волны рентгеновских лучей. В этом случае при прохождении лучей через кристалл должно было бы наблюдаться явление дифракции. После некоторых экспериментов удалось получить фотографии сложных дифракционных картин, которые окончательно убедили ученый мир в волновых свойствах рентгеновских лучей. В последствии Макс фон Лауэ разработал теорию интерференции Х-лучей на кристаллах, предложив использовать кристаллы в качестве дифракционных решеток. В том же 1912 г. эта теория интерференции получила экспериментальное подтверждение в опытах В.Фридриха и П.Книппинга.

     В 1913 г. Вильям Лоренс Брэгг (сын У.Г.Брэгга) и независимо русский кристаллограф Георгий Викторович Вульф вывели формулу, описывающую условия интерференционного отражения рентгеновских лучей от кристаллов (формула Брэгга - Вульфа). Указанная формула, связывающая длину волны рентгеновского излучения с периодом кристаллической решетки кристалла, позволяет, с одной стороны, используя рентгеновские лучи определенной длины волны, исследовать структуру вещества, а с другой - используя такие кристаллы, как поваренная соль, структура которой известна, можно исследовать сами рентгеновские лучи. Обширные эксперименты такого рода, проведенные отцом и сыном Брэггами, положили начало рентгеноструктурному анализу.

     Споры того времени вокруг квантовой или волновой природы рентгеновских лучей прекратились с открытием Артура Комптона. Он обнаружил эффект (эффект Комптона): падающий рентгеновский луч выбивает электрон из атома и рассеивается с потерей энергии, подтверждая тем самым, что рентгеновские лучи, как и видимый свет, иногда действуют как частицы. В 1908 г. Уильям Генри Брэгг, как отмечалось ранее, фиксировал возникновение электрического тока под действием Х-лучей, но не мог обнаружить потерю энергии излучения, поскольку тогда еще не было инструментов детельного изучения рентгеновских спектров. Поэтому считается, что именно выводы Комптона убедили ученых и в проявлении корпускулярных свойств Х-лучей. С того времени рентгеновскому излучению присвоен квантово-волнового дуализм.

     Другое направление исследований рентгеновского излучения берет начало в опытах Чарлза Барклы. В 1897 г. было замечено, что под воздействием рентгеновских лучей, падающих на вещество - неважно, на твердое тело, жидкость или газ, - возникает вторичное излучение. В 1903 г. Баркла опубликовал свои первые результаты по вторичному излучению, которое, как он считал, было вызвано исключительно рассеянием первичного луча. Установленный им эффект, что интенсивность рассеяния увеличивается пропорционально атомному весу вещества, на котором происходит рассеяние, придал вес электронной теории материи, еще не полностью тогда признанной. Дальнейшие наблюдения, выполненные Чарлзом Барклой показали, что в случае более тяжелых элементов вторичное излучение на самом деле состоит из двух компонент: таких же рентгеновских лучей, что и первичное излучение, и менее проникающего - более "мягкого", излучения, которое испускается рассеивающим веществом. Причем проникающая сила мягкого излучения увеличивалась согласно положению, занимаемому излучающим элементом в периодической таблице. Это излучение в 1906 г. Баркла назвал характеристическим, потому что проникающая способность зависела от характера излучающего вещества. Генри Мозли позднее воспользовался этим результатом чтобы установить смысл атомного номера элемента (число единиц заряда ядра). Это стало важным шагом к пониманию строения атомного ядра.

     Важность открытия характеристического излучения стала ясной через десять лет, после того как отец и сын Брэгги показали возможность исследования рентгеновских спектров с помощью кристаллов с известным строением. Используя методику экспериментов, предложенную Брэггами, в 1911 г. Баркла показал, что характеристическое излучение тяжелых элементов бывает двух типов: коротковолновое, которое он назвал K-излучением, и длинноволновое, названное им L-излучением. Эти эксперименты фактически стали началом рентгеновской спектроскопии. П Ценный вклад в эту область внесли французский физик Морис де Бройль (старший брат Луи де Бройля) и английский физик Генри Мозли, который первым начал исследовать спектры рентгеновского излучения химических элементов, заложив основу рентгеноспектрального анализа. На практике эти открытия в то время использовали только для получения рентгеновских лучей с определенными свойствами, что было необходимо для рентгеноструктурного анализа.

     Но само происхождение рентгеновских спектров элементов в то время не удавалось объяснить теоретически. Такое положение сохранялось до идеи Нильса Бора о квантовой модели атома, которая объяснила происхождение характеристического рентгеновского излучения квантовыми переходами электронов с внешних оболочек атома на внутренние с выделением рентгеновских квантов. Далее последовало открытие Мозли - закон Мозли, связавший частоту спектральных линий с порядковым номером излучающего элемента в периодической таблице Менделеева. Мозли показал, что характеристическое рентгеновское излучение создается внутренними электронами (находящимися вблизи ядра) атома и что оно дает информацию о внутренних электронах атома, как обычный свет о внешних электронах. Пр Генри Мозли было всего лишь 26 лет, когда он в 1913 г. опубликовал результаты своих экспериментов, подтвердив ими предположение голландского исследователя Антониуса ван дер Брука о равенстве заряда ядра атома порядковому номеру соответствующего элемента в периодической системе. Этот труд навеки вписал имя Генри Мозли в историю науки.

     Мозли считал, что его метод исследования имеет большое будущее, поскольку "он способен привести к открытию еще неизвестных элементов, так как положение соответствующих им характеристических линий рентгеновского излучения можно предсказать заранее". Мозли для практического подтверждения своих идей проводил поиск предсказанных, но не открытых элементов. Он пытался обнаружить с помощью рентгеновских спектров природных объектов элемент номер 72, чья клетка пустовала тогда в таблице элементов слева от тантала (уже открытого к тому времени). Но только спустя 8 лет спектроскопист А.Довийе в 1922 г., используя более совершенную аппаратуру для рентгеноспектрального анализа, обнаружил новый элемент 72 (гафний) в тех же образцах, которые ранее исследовал Мозли. Другим элементом, обнаруженным в природе с помощью рентгеноспектрального анализа, стал рений (открыт супругами Ноддак в 1925 г.). Гафний и Рений оказались последними по времени открытия стабильными химическими элементами на Земле. Характеристический рентгеновский спектр стал "визитной карточкой" элемента.

     Работа по развитию техники рентгеноспектрального анализа была продолжена шведским физиком-экспериментатором Карлом Манне Георгом Сигбаном. Он разработал новые методы получения детальных рентгеновских спектров и исследовал рентгеновские спектры почти всех химических элементов. Это позволило получить исчерпывающие данные о структуре электронных оболочек атомов. Сигбан изготовил дифракционную решетку для исследования длинноволнового рентгеновского излечения. Тем самым он ликвидировал пробел между жестким (коротковолновым) рентгеновским излучением, которое исследуется с помощью кристаллических решеток, и оптическим ультрафиолетовым излучением, исследуемым с помощью обычной оптической дифракционной решетки. Исследования шведского ученого показали как дополняются электронные оболочки атома при переходе от более легких элементов к тяжелым. Его наблюдения позволили определить, сколько электронов находится в соответствующей оболочке того или иного элемента.

     Случилось так, что 57 лет спустя Нобелевская премия была вручена Каю Сигбану - сыну Карла Сигбана. Увлекаясь с раннего возраста физикой, Сигбан также занялся исследованием рентгеновского излечения, в частности изучением электронов, выбиваемых рентгеновскими лучами из вещества. В 1951 г, будучи профессором, молодой шведский ученый положил начало новому методу - электронной спектроскопии и использовал его для химического анализа. Основная заслуга этого исследователя состоит в том, что он сконструировал прибор для исследования энергетических спектров электронов, выбиваемых из атомов рентгеновскими лучами. Разработанный им рентгеновский электронный спектрометр оказался исключительно ценным прибором для современной химии. Максимумы электронных спектров соответствуют энергиям связи электронов на внутренних оболочках атомов, что дает возможность исследовать структуру молекул. Метод отличается высокой чувствительностью, что позволяет ограничиваться для анализа поверхностным слоем вещества толщиной не более 50-100 ангстрем. Это дает возможность исследовать процессы коррозии, адсорбции и другие поверхностные химические явления. Приборы для электронной спектроскопии являются непременной составной частью оснащения современной исследовательской лаборатории. 

    1. Принцип действия
 

     Здесь мы хотим описать в чем заключается смысл рентгеновской флуоресценции и чем данный метод отличается от других видов анализа. П Когда атомы образца облучаются фотонами с высокой энергией - возбуждающим первичным излучением рентгеновской трубки, это вызывает испускание электронов. Электроны покидают атом. Как следствие, в одной или более электронных орбиталях образуются "дырки" - вакансии, благодаря чему атомы переходят в возбужденное состояние, т.е. становятся нестабильны. Через миллионные доли секунды атомы возвращаются к стабильному состоянию когда вакансии во внутренних орбиталях заполняются электронами из внешних орбиталей. Такой переход сопровождается испусканием энергии в виде вторичного фотона - этот феномен и называется "флуоресценция''. Энергия вторичного фотона находится в диапазоне энергий рентгеновского излучения, которое располагается в спектре электромагнитных колебаний между ультрафиолетом и гамма-излучением.

     Различные электронные орбитали обозначаются K,L,M и.т.д., где К - орбиталь, ближайшая к ядру. Каждой орбитали электрона в атоме каждого элемента соответствует собственный энергетический уровень. Энергия испускаемого вторичного фотона определяется разницей между энергией начальной и конечной орбиталей, между которыми произошел переход электрона. 

     

     Рис. 1 

     Длина волны испускаемого фотона связана с энергией формулой E = E1-E2 = hc/l , где E1 и E2 - энергии орбиталей, между которыми произошел переход электрона, h - постоянная Планка, с - скорость света, l - длина волны испускаемого(вторичного) фотона. Таким образом длина волны флуоресценции является индивидуальной характеристикой каждого элемента и называется характеристической флуоресценцией. В то же время интенсивность (число фотонов, поступающих за единицу времени) пропорциональна концентрации (количеству атомов) соответствующего элемента. Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца. П Источником возбуждающего (первичного) излучения высокой энергии является рентгеновская трубка, питаемая высокостабильным генератором высокого напряжения. Механизм возникновения первичного излучения похож на механизм флуоресценции, за исключением того, что возбуждение материала анода трубки происходит при его бомбардировке электронами высоких энергий, а не рентгеновским излучением, как при флуоресценции. Спектральный состав излучения трубки зависит от выбора материала анода. Для большинства областей применения оптимальным является родиевый анод, хотя другие материалы, например молибден, хром или золото, могут быть предпочтительнее в определенных случаях.

     При проведении анализа все элементы, присутствующие в образце, одновременно излучают фотоны характеристической флуоресценции. Для изучения концентрации какого-либо элемента в образце необходимо из общего потока излучения, поступающего от пробы, выделить излучение такой длины волны, которая является характеристической для исследуемого элемента. Это достигается разложением суммарного потока излучения, поступающего от пробы, по длинам волн и получением спектра. Спектром называется кривая, описывающая зависимость интенсивности излучения от длины волны. Для разложения излучения в спектр (выделения различных длин волн) используются кристалл-анализаторы с кристаллическим плоскостями, параллельными поверхности и имеющими межплоскостное расстояние d. 

Информация о работе Определение состава стиральных порошков