Автор: Пользователь скрыл имя, 11 Декабря 2011 в 15:33, реферат
Нуклеиновые кислоты встречаются в организме не в свободном виде, а в составе нуклеопротеинов.
Молекулы нуклеиновых кислот заряжены отрицательно. Белковые компоненты нуклеопротеинов - положительно, потому что в них много аргинина и лизина. Связи между нуклеиновыми кислотами и белками - ионные.
Нуклеиновые кислоты - гетерополимеры, их мономерами являются мононуклеотиды. Мононуклеотид состоит из азотистого основания+рибоза у РНК (или дезоксирибоза у ДНК) - вместе они составляют нуклеозид, и остатка фосфорной кислоты.
ХИМИЯ
И ОБМЕН НУКЛЕИНОВЫХ
КИСЛОТ
Нуклеиновые
кислоты встречаются в
Молекулы нуклеиновых кислот заряжены отрицательно. Белковые компоненты нуклеопротеинов - положительно, потому что в них много аргинина и лизина. Связи между нуклеиновыми кислотами и белками - ионные.
Нуклеиновые кислоты - гетерополимеры, их мономерами являются мононуклеотиды. Мононуклеотид состоит из азотистого основания+рибоза у РНК (или дезоксирибоза у ДНК) - вместе они составляют нуклеозид, и остатка фосфорной кислоты.
НОМЕНКЛАТУРА НУКЛЕОТИДОВ
|
ТМФ встречается только в ДНК, а УМФ - только в РНК.
В составе нуклеиновых кислот мононуклеотиды связаны 3’,5’-диэфирными связями между рибозами (d-рибозами) соседних мононуклеотидов через остаток фосфорной кислоты.
БИОЛОГИЧЕСКАЯ РОЛЬ НУКЛЕИНОВЫХ КИСЛОТ.
1.
ДНК: хранение генетической
2. РНК:
а) хранение генетической информации у некоторых вирусов;
б) реализация генетической информации: и-РНК (м-РНК) - информационная (матричная), т-РНК (транспортная), р-РНК (рибосомальная)
в) некоторые молекулы РНК способны катализировать реакции гидролиза 3’,5’-фосфодиэфирной связи в самой молекуле РНК. Такие РНК называют рибозимами.
ФУНКЦИИ МОНОНУКЛЕОТИДОВ.
1. Структурная.
Из мононуклеотидов построены нуклеиновые кислоты, некоторые коферменты и простетические группы ферментов.
2. Энергетическая.
Мононуклеотиды удерживают макроэргические связи - являются аккумуляторами энергии. АТФ - это универсальный аккумулятор энергии, энергия УТФ используется для синтеза гликогена, ЦТФ - для синтеза липидов, ГТФ - для движения рибосом в ходе трансляции (биосинтез белка).
Синтез АТФ из АДФ происходит двумя способами: окислительное и субстратное фосфорилирование, синтез любых других нуклеотидтрифосфатов (НТФ) из дифосфатных форм - через АТФ:
НМФ + АТФ <-----> НДФ + АДФ
Фермент: нуклеотидмонофосфокиназа
НДФ + АТФ <-----> НТФ + АДФ
Фермент: нуклеотиддифосфокиназа
3. Регуляторная.
Мононуклеотиды
- аллостерические эффекторы
Азотистое
основание аденин является более
универсальным, чем остальные: у
него такое взаимное расположение аминогруппы
с фосфатом, что возможен синтез АТФ из
АДФ и неферментативным путем.
ОБМЕН НУКЛЕИНОВЫХ КИСЛОТ
Нуклеиновые
кислоты в организме постоянно
обновляются.
КАТАБОЛИЗМ НУКЛЕИНОВЫХ КИСЛОТ
Начинается с гидролиза 3',5'-фосфодиэфирной связи под действием ферментов нуклеаз:
- ДНКазы - расщепляют ДНК
- РНКазы - расщепляют РНК
Среди ДНКаз и РНКаз различают:
- экзонуклеазы (5' и 3');
- эндонуклеазы - специфичны к мононуклеотидной последовательности, есть высокоспецифичные: рестриктазы - используются в генной инженерии.
Далее происходит отщепление фосфата от мононуклеотида с участием ферментов нуклеотидаз с образованием нуклеозидов.
Нуклеозид
может расщепляться путем гидролиза
под действием фермента нуклеозидазы
на азотистое основание и пентозу, но чаще
происходит фосфоролиз - при этом нуклеозид
расщепляется на азотистое основание
и фосфорибозу.
Далее
пентозы могут быть утилизированы
во II-м этапе ГМФ-пути.
Различия в катаболизме пуриновых и пиримидиновых азотистых оснований.
Пиримидиновые азотистые основания подвергаются тотальному разрушению до СО2, Н2О и NH3.
Пуриновые азотистые основания сохраняют циклическую структуру пурина. Конечный продукт: мочевая кислота - вещество пуриновой природы.
КАТАБОЛИЗМ
Возможны несколько вариантов катаболизма. Разберем более простой вариант.
Аминогруппа может отщепляться, когда азотистое основание еще находится в составе нуклеозида, мононуклеотида и даже в составе нуклеиновой кислоты. Но поскольку в организме урацил не входит в состав ДНК, то дезаминирование цитозина и превращение его в урацил воспринимается клеткой как ошибка и исправляется.
Бета-аланин
обычно разрушается до CO2, H2O
и NH3, но частично может использоваться
для синтеза пептидов карнозина и ансерина
в мышечной ткани и для синтеза КоА. Конечным
продуктов распада
пиримидиновых азотистых оснований можно
считать и мочевину, которая образуется
из аммиака по известному механизму,
изложенному в лекциях по обмену белков.
Тимин распадается подобно урацилу, но вместо бета-аланина образуется бета-аминоизобутират (альфа-метил-бета-аланин).
Бета-аминоизобутират
выводится из организма и определение
его количества в моче может использоваться
для оценки катаболизма ДНК.
КАТАБОЛИЗМ ПУРИНОВЫХ АЗОТИСТЫХ ОСНОВАНИЙ
Распад начинается с отщепления аминогруппы (ее отщепление также возможно в составе ДНК).
Такой путь распада характерен для человека. Мочевая кислота образуется еще у обезьян, ящериц, змей и долматской собаки.
При наследственном дефиците фермента аденозиндезаминазы наблюдается синдром врожденного иммунодефицита.
Мочевая кислота выводится из организма с мочой - это обычный ее компонент, но в почках организма человека происходит ее интенсивная реабсорбция и концентрация мочевой кислоты в крови поддерживается на постоянном уровне 0.12-0.30 ммоль/л.
Функции мочевой кислоты в крови:
1.
Является мощным стимулятором
центральной нервной системы
- ингибирует фосфодиэстеразу
2.
Обладает антиоксидантными
В организме мочевая кислота находится в основном в лактимной форме.
Гуанин также превращается в мочевую кислоту, но под действием гуаназы сразу образуется ксантин, поскольку в 6-м положении в кольце гуанина находится оксигруппа.
За 1 сутки в организме образуется около 1 грамма мочевой кислоты. Сама мочевая кислота и ее соли ураты (натриевые соли мочевой кислоты) плохо растворимы в воде и могут выпадать в осадок и откладываться в сосудах. Осадок уратов фагоцитируется макрофагами, которые погибают, и при этом освобождаются гидролитические ферменты, действие этих ферментов на окружающие ткани приводит к воспалению. Даже незначительное повышение концентрации уратов или мочевой кислоты приводит к образованию осадков. Такие явления наблюдаются при генетически обусловленном повышении содержания мочевой кислоты в крови. Это ведет к развитию заболеваний - МОЧЕКАМЕННОЙ БОЛЕЗНИ (при отложении кристаллов в почечной лоханке или в мочевом пузыре) и ПОДАГРЫ (при отложении солей мочевой кислоты в суставах).
При
лечении подагры используются ингибиторы
фермента ксантиноксидазы, потому что
гипоксантин лучше растворим
в воде; соли лития, так как ураты лития
лучше растворимы в воде: чем ураты натрия.
Используется также диетическое питание,
исключающее продукты, богатые нуклеиновыми
кислотами, пуринами и их аналогами: икра
рыб, мясо, кофе и чай.
АНАБОЛИЗМ НУКЛЕИНОВЫХ КИСЛОТ
Нуклеиновые кислоты (НК) являются полимерами. Поэтому их синтез представляет собой цепочку реакций полимеризации мононуклеотидов. В ходе этих реакций идет постепенное удлинение полинуклеотида.
Субстратами для синтеза являются мононуклеотиды в трифосфатной форме - нуклеозидтрифосфаты (НТФ).
НТФ + НKn -------> HКn+1 + ФФ
Образующийся пирофосфат (ФФ) разрушается пирофосфатазой.
В синтезе РНК в качестве НТФ используются АТФ, ГТФ, ЦТФ, УТФ. Для синтеза ДНК - dАТФ, dГТФ, dЦТФ, ТТФ (всегда синтезируется с дезоксирибозой).
Синтез идет в направлении 5'--->3'.
Синтез НК - это матричный процесс, порядок присоединения мононуклеотидов определяется строением материнской НК.
Фермнты синтеза НК называются полимеразами. Полимеразы относятся к классу синтетаз. Их биосинтез контролируют сами субстраты - НК.
В организме человека встречаются следующие полимеразы:
ДНК-ПОЛИМЕРАЗЫ:
- альфа-полимеразы отвечают за синтез основной цепи;
-
бета-полимеразы устраняют
-
гамма-полимеразы - митохондриальные ферменты.
РНК-ПОЛИМЕРАЗЫ:
I - участвуют в синтезе рибосомальной РНК(рРНК);
II - участвуют в синтезе информационной (матричной) РНК(иРНК, мРНК);
III
- участвуют в синтезе транспортной РНК
(тРНК).
Ингибитором РНК-полимеразы-II является пептид L-амонитин. Встречается в ядовитых грибах Amonyta(бледная поганка).
Синтез ДНК называется репликацией. Направление фосфодиэфирных связей одной из синтезируемых полинуклеотидных цепей ДНК совпадает с направлением синтеза (5'--->3'), поэтому она синтезируется непрерывно и сразу целиком. А у другой - не совпадает (3'--->5'). Поэтому она синтезируется частями. Эти части называются "фрагменты Оказаки". Синтезировать фрагменты Оказаки de novo (с нуля) ДНК-полимеразы не могут, поэтому для синтеза каждого фрагмента нужна "затравка" - праймер. Праймер - это кусочек цепи РНК. Синтез праймеров катализируют специальные ферменты - праймазы (это один из вариантов РНК-полимераз). Синтез РНК происходит на определенных участках молекулы ДНК и называется транскрипцией. В цепи ДНК существуют специальные участки: промоторы, которые указывают на начало транскрипции и терминаторы, указывающие на конец транскрипции. При транскрипции образуется высокомолекулярный предшественник РНК - первичный транскрипт. Затем здесь же, в ядре клетки, идет постсинтетическая модификация РНК - сплайсинг. Этот процесс катализируют ферменты эндонуклеазы - из первичного транскрипта вырезаются интроны. Оставшиеся экзоны сшиваются РНК-лигазами. Далее к 5'-концу молекулы РНК присоединяется 7-метил-ГТФ (КЭП-фрагмент) - этот процесс называется "кэпирование". К 3'-концу присоединяется полиадениловый "хвост" (полиАМФ) - реакцию катализирует полиаденилатполимераза.